Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>(x+5)(x-3)=0
=>x=3 hoặc x=-5
c: \(\Leftrightarrow x\left(x^2-4x+5\right)=0\)
=>x=0
d: \(\Leftrightarrow2\cdot2^x-10\cdot2^x=-16\)
\(\Leftrightarrow-8\cdot2^x=-16\)
\(\Leftrightarrow2^x=2\)
hay x=1
Bài giải:
a) x3 – 1414x = 0 => x(x2 –(12)2(12)2) = 0
=>x(x - 1212)(x + 1212) = 0
Hoặc x = 0
Hoặc x - 1212 = 0 => x = 1212
Hoặc x + 1212 = 0 => x = -1212
Vậy x = 0; x = -1212; x = 1212.
b) (2x – 1)2 – (x + 3)2 = 0
[(2x - 1) - (x + 3)][(2x - 1) + (x + 3)] = 0
(2x - 1 - x - 3)(2x - 1 + x + 3) = 0
(x - 4)(3x + 2) = 0
Hoặc x - 4 = 0 => x = 4
Hoặc 3x + 2 = 0 => 3x = 2 => x = -2323
Vậy x = 4; x = -2323.
c) x2(x – 3) + 12 – 4x = 0
x2(x – 3) - 4(x -3)= 0
(x - 3)(x2- 22) = 0
(x - 3)(x - 2)(x + 2) = 0
Hoặc x - 3 = 0 => x = 3
Hoặc x - 2 =0 => x = 2
Hoặc x + 2 = 0 => x = -2
Vậy x = 3; x = 2; x = -2.
a ) \(x^3-\dfrac{1}{4}x=0\)
\(\Leftrightarrow\) \(x\left(x^2-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
Hoặc x = 0
Hoặc \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
Hoặc \(x+\dfrac{1}{2}=0\Rightarrow x=-\dfrac{1}{2}\)
b) \((2x - 1 )^2 - (x + 3)^2 = 0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x-3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
Hoặc \(x-4=0\Rightarrow x=4\)
Hoặc \(3x+2=0\Rightarrow3x=-2\Rightarrow x=-\dfrac{2}{3}\)
c) \(x^2 (x-3) + 12 - 4x = 0\)
\(\Leftrightarrow x^2\left(x-3\right)-\left(4x-12\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)=0\)
Hoặc \((x - 3) = 0\) \(\Rightarrow\) x = 3
Hoặc \(x - 2 = 0\) \(\Rightarrow\) x = 2
Hoặc \(x + 2 = 0 \) \(\Rightarrow\) x = \(- 2\)
a) ĐKXĐ: x khác 0
\(x+\dfrac{5}{x}>0\)
\(\Leftrightarrow x^2+5>0\) ( luôn đúng)
Vậy bất pt vô số nghiệm ( loại x = 0)
d)
\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)
\(\Leftrightarrow2x+2-4x+4>-15\)
\(\Leftrightarrow-2x>-21\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Vậy....................
a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)
Mà \(x^2+5>0\)
\(\Rightarrow x>0\)
d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)
\(\Leftrightarrow-x>-\dfrac{21}{2}\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Mk xin lỗi nha, câu c sai đề
c) (x+6)4 + (x+8)4 = 272
b: =>(2x-1)(2x-1+4-2x)=0
=>3(2x-1)=0
=>2x-1=0
=>x=1/2
c: =>(x+1)(x^2-x+1)-x(x+1)=0
=>(x+1)(x-1)^2=0
=>x=1 hoặc x=-1
e: =>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
h: =>x[(x^2-5)^2-4]=0
=>x(x^2-7)(x^2-3)=0
=>\(x\in\left\{0;\pm\sqrt{7};\pm\sqrt{3}\right\}\)
k: =>(x-1)(5x+3-3x+8)=0
=>(x-1)(2x+11)=0
=>x=1 hoặc x=-11/2
l: =>x^2(x+1)+(x+1)=0
=>(x+1)(x^2+1)=0
=>x+1=0
=>x=-1
a: \(\Leftrightarrow5\left(x+1\right)\left(x-1\right)=2x-2-3x-3=-x-5\)
\(\Leftrightarrow5x^2-5+x+5=0\)
=>x(5x+1)=0
=>x=0 hoặc x=-1/5
b: \(\Leftrightarrow x^2-x-\left(2x-3\right)\left(x+1\right)=2x+3\)
\(\Leftrightarrow x^2-x-2x^2-2x+3x+3=2x+3\)
\(\Leftrightarrow-x^2+3=2x+3\)
=>-x(x+2)=0
=>x=0(nhận) hoặc x=-2(nhận)
c: \(\Leftrightarrow4x^2-25=0\)
=>(2x-5)(2x+5)=0
=>x=5/2 hoặc x=-5/2
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
a) \(x^2-16=0\Rightarrow x^2=16\Rightarrow x^2=\pm4\)
b) \(4x^2-9=0\Rightarrow\left(2x-3\right)\left(2x+3\right)=0\Rightarrow x=\pm1,5\)
c) \(25x^2-1=0\Rightarrow\left(5x-1\right)\left(5x+1\right)=0\Rightarrow x=\pm0,2\)
d) \(4\left(x-1\right)^2-9=0\Rightarrow\left(2x-2-3\right)\left(2x-2+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-5=0\Rightarrow x=2,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)
e) \(25x^2-\left(5x+1\right)^2=0\Rightarrow\left(5x+5x+1\right)\left(5x-5x-1\right)=0\Rightarrow10x+1=0\Rightarrow x=-0,1\)
f) \(\dfrac{1}{4}-9\left(x-1\right)^2=0\Rightarrow\left(\dfrac{1}{2}+3x-3\right)\left(\dfrac{1}{2}-3x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=\dfrac{7}{6}\end{matrix}\right.\)
g) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\Rightarrow\left(\dfrac{1}{4}+2x+\dfrac{3}{4}\right)\left(\dfrac{1}{4}-2x-\dfrac{3}{4}\right)=0\Rightarrow\left[{}\begin{matrix}x=-0,5\\x=-0,25\end{matrix}\right.\)
h) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=0\Rightarrow\left(\dfrac{1}{3}x-1\right)^2=0\Rightarrow\dfrac{1}{3}x=1\Rightarrow x=3\)
k) \(4\left(x-3\right)^2-\left(2-3x\right)^2=0\Rightarrow\left(2x-6+2-3x\right)\left(2x-6-2+3x\right)=0\Rightarrow\left[{}\begin{matrix}-x-4=0\Rightarrow x=-4\\5x-8=0\Rightarrow x=1,6\end{matrix}\right.\)
l) \(x^2-x-12=0\Rightarrow x^2-4x+3x-12=0\Rightarrow x\left(x-4\right)+3\left(x-4\right)=0\Rightarrow\left(x+3\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
Lời giải:
a. $x^3+2x^2+x+2=0$
$\Leftrightarrow (x^3+2x^2)+(x+2)=0$
$\Leftrightarrow x^2(x+2)+(x+2)=0$
$\Leftrightarrow (x+2)(x^2+1)=0$
$\Leftrightarrow x+2=0$ hoặc $x^2+1=0$
$\Leftrightarrow x=-2$ (chọn) hoặc $x^2=-1<0$ (loại)
b.
$x^3+4x^2+\frac{1}{4}x+1=0$
$\Leftrightarrow 4x^3+16x^2+x+4=0$
$\Leftrightarrow (4x^3+16x^2)+(x+4)=0$
$\Leftrightarrow 4x^2(x+4)+(x+4)=0$
$\Leftrightarrow (x+4)(4x^2+1)=0$
$\Leftrightarrow x+4=0$ hoặc $4x^2+1=0$
$\Leftrightarrow x=-4$ (chọn) hoặc $x^2=\frac{-1}{4}<0$ (loại)