K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

a: \(x^2-4x=3\left(x-4\right)\)

\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)

b: \(x^2-5x-24=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

14 tháng 10 2021

a) pt <=> (x - 4)(x - 3) = 0

<=> x = 4 hoặc x = 3

b) pt <=> (x - 8)(x + 3) = 0

<=> x = 8 hoặc x = -3

15 tháng 9 2021

a) \(\left(x-2\right)^2-\left(x^2-3x\right)=9\)

\(\Rightarrow x^2-4x+4-x^2+3x-9=0\)

\(\Rightarrow-x-5=0\)

=> x = -5

b) \(\left(5x-2\right)^2=\left(4-x\right)^2\)

\(\Rightarrow25x^2-10x+4-16+8x-x^2=0\)

\(\Rightarrow24x^2-2x-12=0\)

\(\Rightarrow12x^2-x-6=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\dfrac{3}{4}\end{matrix}\right.\)

c) \(x^2-4x-5=0\)

=> (x - 5).(x + 1) = 0

=> x = 5 hoặc x = -1

15 tháng 9 2021

a)\(\left(x-2\right)^2-\left(x^2-3x\right)=9\)

\(x^2-4x+4-x^2+3x=9\)

\(-x+4=9\)

\(-x=5\)

\(x=-5\)

15 tháng 9 2021

a) \(\left(x-2\right)^2-\left(x^2-3x\right)=9\)

\(x^2-4x+4-x^2+3x=9\)

\(-x+4=9\)

-x=5

x=-5

15 tháng 9 2021

\(\left(5x-2\right)^2=\left(4-x\right)^2\)

⇒5x-2=4-x⇒6(x-1)=0⇒x=1

hoặc -5x+2=-4+x⇒-6(x+1)=0⇒x=-1

13 tháng 6 2021

`a)(x-6)^2-(x+6)^2=12`

`<=>(x-6-x-6)(x-6+x+6)=12`

`<=>-12.2x=12`

`<=>2x=-1`

`<=>x=-1/2`

Vậy `x=-1/2`

`b)36x^2-12x+1=81`

`<=>(6x-1)^2=81`

`<=>(6x-1-9)(6x-1+9)=0`

`<=>(6x-10)(6x+8)=0`

`<=>(3x-5)(3x+4)=0`

`<=>` \(\left[ \begin{array}{l}x=\dfrac53\\x=-\dfrac43\end{array} \right.\) 

`c)x^2-4x-12=0`

`<=>x^2-6x+2x-12=0`

`<=>x(x-6)+2(x-6)=0`

`<=>(x-6)(x+2)=0`

`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\) 

`d)x^2-5x-6=0`

`<=>x^2-6x+x-6=0`

`<=>x(x-6)+x-6=0`

`<=>(x-6)(x+1)=0`

`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\) 

1 tháng 7 2021

a)

 ⇔ \(x^2-16=9\)

⇔ \(x^2=25\)

⇔ \(x=\pm5\)

b)

 ⇔ \(x^2-4x+4-25x^2+20x-4=0\)

⇔ \(16x-24x^2=0\)

⇔ \(8x\left(2-3x\right)=0\)

⇒ \(\left[{}\begin{matrix}x=0\\2-3x=0\end{matrix}\right.\)   ⇔   \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=\dfrac{2}{3}\)

c)  

⇔ \(3x^2-10x-20=0\)

⇔ \(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{205}{9}=0\)

⇔ \(\left(x-\dfrac{5}{3}\right)^2=\dfrac{205}{9}\)

⇒ \(\left[{}\begin{matrix}x-\dfrac{5}{3}=\sqrt{\dfrac{205}{9}}\\x-\dfrac{5}{3}=-\sqrt{\dfrac{205}{9}}\end{matrix}\right.\)  ⇔ \(\left[{}\begin{matrix}x=\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\\x=-\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\end{matrix}\right.\)  ⇔ \(\left[{}\begin{matrix}x=\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\\\text{x}=-\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\end{matrix}\right.\)

Vậy... 

d) 

⇔ \(\left(x^2+x\right)^2-49=\left(x^2+x\right)^2-7x\)

⇔ 7x = 49

⇔ x=7

Vậy...

a: Ta có: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)

\(\Leftrightarrow2x-1=0\)

hay \(x=\dfrac{1}{2}\)

b: Ta có: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)

\(\Leftrightarrow x^3-x^3-1=x\)

hay x=-1

c: Ta có: \(56x^4+7x=0\)

\(\Leftrightarrow7x\left(8x^3+1\right)=0\)

\(\Leftrightarrow x\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d: Ta có: \(x^2-5x-24=0\)

\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)

7 tháng 6 2021

`a)16x^2-24x+9=25`

`<=>(4x-3)^2=25`

`+)4x-3=5`

`<=>4x=8<=>x=2`

`+)4x-3=-5`

`<=>4x=-2`

`<=>x=-1/2`

`b)x^2+10x+9=0`

`<=>x^2+x+9x+9=0`

`<=>x(x+1)+9(x+1)=0`

`<=>(x+1)(x+9)=0`

`<=>` \(\left[ \begin{array}{l}x=-9\\x=-1\end{array} \right.\) 

`c)x^2-4x-12=0`

`<=>x^2+2x-6x-12=0`

`<=>x(x+2)-6(x+2)=0`

`<=>(x+2)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\) 

7 tháng 6 2021

`d)x^2-5x-6=0`

`<=>x^2+x-6x-6=0`

`<=>x(x+1)-6(x+1)=0`

`<=>(x+1)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\) 

`e)4x^2-3x-1=0`

`<=>4x^2-4x+x-1=0`

`<=>4x(x-1)+(x-1)=0`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac14\end{array} \right.\) 

`f)x^4+4x^2-5=0`

`<=>x^4-x^2+5x^2-5=0`

`<=>x^2(x^2-1)+5(x^2-1)=0`

`<=>(x^2-1)(x^2+5)=0`

Vì `x^2+5>=5>0`

`=>x^2-1=0<=>x^2=1`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\) 

19 tháng 6 2021

a) \(\Leftrightarrow x^2-36=64\)

\(\Leftrightarrow x^2=100\)

\(\Leftrightarrow x=\pm10\)

Vậy \(x=\pm10\)

b) \(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{1;3\right\}\)

NV
8 tháng 3 2020

Bài 1

a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)

b/

\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)

\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

NV
8 tháng 3 2020

1.

c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)

\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)

\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a. PT $\Leftrightarrow (3-2x-3-2x)(3-2x+3+2x)=8$

$\Leftrightarrow -4x.6=8$

$\Leftrightarrow -24x=8\Leftrightarrow x=\frac{-1}{3}$

b.

$9x^5-72x^2=0$

$\Leftrightarrow 9x^2(x^3-8)=0$

$\Leftrightarrow x^2=0$ hoặc $x^3=8$

$\Leftrightarrow x=0$ hoặc $x=2$

c.

$5x^4-8x^2-4=0$

$\Leftrightarrow 5x^4-10x^2+2x^2-4=0$

$\Leftrightarrow 5x^2(x^2-2)+2(x^2-2)=0$

$\Leftrightarrow (5x^2+2)(x^2-2)=0$

$\Leftrightarrow 5x^2+2=0$ (loại) hoặc $x^2-2=0$ (chọn)

$\Leftrightarrow x=\pm \sqrt{2}$

d.

PT $\Leftrightarrow [x^2(x+1)-4(x+1)]:(x-2)=0$

$\Leftrightarrow (x^2-4)(x+1):(x-2)=0$

$\Leftrightarrow (x-2)(x+2)(x+1):(x-2)=0$
$\Leftrightarrow (x+2)(x+1)=0$

$\Leftrightarrow x+2=0$ hoặc $x+1=0$

$\Leftrightarrow x=-2$ hoặc $x=-1$

a: Ta có: \(\left(3-2x\right)^2-\left(3+2x\right)^2=8\)

\(\Leftrightarrow9-12x+4x^2-9-12x-4x^2=8\)

\(\Leftrightarrow-24x=8\)

hay \(x=-\dfrac{1}{3}\)

b: Ta có: \(9x^5-72x^2=0\)

\(\Leftrightarrow9x^2\left(x^3-8\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)\left(x^2+2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)