\(x^2-36=0\)

b)\(5x\left(x-2015\right)-x+2015=0\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

x=6 và -6

27 tháng 10 2019

\(x^2-36=0\)

\(\left(x-6\right)\left(x+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}}\)

AH
Akai Haruma
Giáo viên
12 tháng 7 2018

Lời giải:

Ta có:

\(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow (x^2+y^2-2xy)+(y^2-2y+1)+(z^2-4z+4)=0\)

\(\Leftrightarrow (x-y)^2+(y-1)^2+(z-2)^2=0\)

Ta thấy:

\(\left\{\begin{matrix} (x-y)^2\geq 0\\ (y-1)^2\geq 0\\ (z-2)^2\geq 0\end{matrix}\right., \forall x,y,z\in\mathbb{R}\)

\(\Rightarrow (x-y)^2+(y-1)^2+(z-2)^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-y=0\\ y-1=0\\ z-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=1\\ z=2\end{matrix}\right.\)

Do đó:

\(A=(x-1)^{2015}+(y-1)^{2015}+(z-1)^{2015}=1\)

21 tháng 8 2020

nếu đề bài cho đẳng thức đó=20 thì lm thế nào ạ?

21 tháng 12 2016

mơn em iu nhìu nhắm nak.

21 tháng 12 2016

shit ~ pate tăng động -_-

5 tháng 3 2017

a) \(A=\left(x-2\right)x-3\left(x-4\right)\left(x-5\right)+1=\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+1\)

\(A=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1=\left(y+1\right)\left(y-1\right)+1\)

\(A=y^2-1+1=y^2=\left(x^2-7x+11\right)^2\)

5 tháng 3 2017

b) đề --> bản chất không sai--> không hợp lý--> sửa

c)

Không thuộc 7-HĐT:-> bạn chịu khó nội suy từ HĐT thứ 6: [A+B]^3--> với A=x ; ___B=(x+y)--> đáp số:\(x^3+y^3+z^3-3xzy=\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+xz+yz\right)\right]\)

hoặc:

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right]\)

11 tháng 1 2020

\(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)

\(\Leftrightarrow\left(\frac{x}{2016}-1\right)+\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)+\left(\frac{x-3}{2013}-1\right)=0\)

\(\Leftrightarrow\frac{x-2016}{2016}+\frac{x-2016}{2015}+\frac{x-2016}{2014}+\frac{x-2016}{2013}=0\)

\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\right)=0\)

Dễ thấy cái vế sau > 0 nên x=2016

11 tháng 1 2020

Câu b có cách nào hay hơn bằng cách phá ko ta,hóng quá:)

\(125x^3=\left(2x+1\right)^3+\left(3x-1\right)^3\)

\(\Leftrightarrow8x^3+12x^2+6x+1+27x^3-27x^2+9x-1=125x^3\)

\(\Leftrightarrow35x^3-15x^2+15x=125x^3\)

\(\Leftrightarrow90x^3+15x^2-15x=0\)

\(\Leftrightarrow x\left(90x^2+15x-15\right)=0\)

\(\Leftrightarrow x\left(3x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow x=0;x=-\frac{1}{2};x=\frac{1}{3}\)

11 tháng 1 2020

a. \(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)

\(\rightarrow\left(\frac{x}{2016}-1\right)+\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)+\left(\frac{x-3}{2013}-1\right)=0\)

\(\rightarrow\frac{x-2016}{2016}+\frac{x-2016}{2015}+\frac{x-2016}{2014}+\frac{x-2016}{2013}=0\)

\(\rightarrow\left(x-2016\right).\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1014}+\frac{1}{2013}\right)=0\)

\(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\ne0\)

\(\rightarrow x-2016=0\)

\(\rightarrow x=2016\)

Vậy ...

7 tháng 3 2017

Nhiều quá cho đáp số thôi nhé

a/ \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1=\left(x^2-7x+11\right)^2\)

b/ \(x^4+2015x^2+2014x+2015=\left(x^2-x+2015\right)\left(x^2+x+1\right)\)

c/ \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

d/ \(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2=\left(x-1\right)^2\left(x^2-5x+1\right)\)

e/ \(12x^3+16x^2-5x-3=\left(2x-1\right)\left(2x+3\right)\left(3x+1\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

a)

\(3x^2-5x=0\Leftrightarrow x(3x-5)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ 3x-5=0\rightarrow x=\frac{5}{3}\end{matrix}\right.\)

b)

\(x^3-0,36x=0\Leftrightarrow x(x^2-0,36)=0\)

\(\Leftrightarrow x(x-0,6)(x+0,6)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x-0,6=0\\ x+0,6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=0,6\\ x=-0,6\end{matrix}\right.\)

c)

\((5x+2)^2-(3x-1)^2=0\)

\(\Leftrightarrow (5x+2-3x+1)(5x+2+3x-1)=0\)

\(\Leftrightarrow (2x+3)(8x+1)=0\)

\(\Rightarrow \left[\begin{matrix} 2x+3=0\\ 8x+1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{-1}{8}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

d)

\(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow x^2-2.5x+5^2=0\Leftrightarrow (x-5)^2=0\)

\(\Rightarrow x=5\)

e)

\(3(x+5)-x^2-5x=0\)

\(\Leftrightarrow 3(x+5)-x(x+5)=0\)

\(\Leftrightarrow (3-x)(x+5)=0\)

\(\Rightarrow \left[\begin{matrix} 3-x=0\rightarrow x=3\\ x+5=0\rightarrow x=-5\end{matrix}\right.\)

f)

\((x-1)^2-2(x-1)(3x+2)+(3x+2)^2=0\)

\(\Leftrightarrow [(x-1)-(3x+2)]^2=0\)

\(\Leftrightarrow (-2x-3)^2=0\Rightarrow -2x-3=0\Rightarrow x=\frac{-3}{2}\)

11 tháng 1 2018

a ) \(\left(5x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{5}\\x=7\end{matrix}\right.\)

b ) \(\left(x^2-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-3\end{matrix}\right.\)

c )\(x^2-x-6=0\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

d ) \(x^2+x-12=0\)

\(\Leftrightarrow x^2-4x+3x-12\)

\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

e ) \(15\left(x+9\right)\left(x-3\right)\left(x+21\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=3\\x=-21\end{matrix}\right.\)

g ) \(\left(x^2+1\right)\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-2\end{matrix}\right.\)

i ) \(x^4+2x^3-2x^2+2x-3=0\)

\(\Leftrightarrow x^4+3x^3-x^3-3x^2+x^2+3x-x-3=0\)

\(\Leftrightarrow x^3\left(x+3\right)-x^2\left(x+3\right)+x\left(x+3\right)-\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^3-x^2+x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\\x=-3\end{matrix}\right.\)

h) \(x^2+5x+6=0\)

\(\Leftrightarrow x^2+3x+2x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)