\(a)|x-2|=2x-9\)

\(b)\frac{x+3}{x-2}< 0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

#)Giải :

a) \(\left|x-2\right|=2x-9\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=2x-9\\-x+2=2x-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2x=2-9\\-x-2x=-2-9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x-2x=-7\\-x-2x=-11\end{cases}\Leftrightarrow}x=7}\)

Vậy x = 7

25 tháng 7 2019

a) \(\left|x-2\right|=2x-9\)

Giải 

Nếu \(2x-9< 0\Rightarrow2x< 9\Rightarrow x< \frac{9}{2}\)

\(\Rightarrow\)Không có giá trị của x thỏa mãn bài toán : 

Nếu \(2x-9\ge0\Rightarrow2x\ge9\Rightarrow x\ge\frac{9}{2}\)

\(\Rightarrow\orbr{\begin{cases}x-2=-2x+9\\x-2=2x-9\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x+2x=2+9\\x-2x=2-9\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x=11\\-x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{3}\left(ktm\right)\\x=7\left(tm\right)\end{cases}}\)

\(\Rightarrow x=7\)

Vậy x = 7

b) \(\frac{x+3}{x-2}< 0\)\(x\ne-2\)

\(\Rightarrow\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}}\)hoặc\(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\)

Nếu \(\hept{\begin{cases}x+3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}}\Rightarrow x\in\varnothing\)

Nếu \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Rightarrow}x\in\left\{-1;0;1\right\}}\)

Vậy \(x\in\left\{-1;0;1\right\}\)

c) \(\frac{x-3}{x+4}>0;x\ne-4\)

\(\Rightarrow\hept{\begin{cases}x-3>0\\x+4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3< 0\\x+4< 0\end{cases}}\)

Nếu \(\hept{\begin{cases}x-3>0\\x+4>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-4\end{cases}}}\Rightarrow x>3\)

Nếu \(\hept{\begin{cases}x-3< 0\\x+4< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -4\end{cases}\Rightarrow}x< -4}\)

\(\Rightarrow\orbr{\begin{cases}x>3\\x< -4\end{cases}}\)

Vậy x > 3 hoặc x < - 4

23 tháng 1 2018

\(\frac{x}{-7}=\frac{5}{-35}\)

\(\frac{x.5}{-35}=\frac{5}{-35}\)

=> x . 5 = 5

x = 5 : 5 

x = 1

24 tháng 1 2018

sao trả lời có một câu mấy dậy bạn giúp mình với

2 tháng 5 2020

kết quả thì mình ko chắc

a) \(\frac{-13}{2x+1}< 0\)

\(=>2x+1>0\)

\(=>2x>-1\)

\(=>x=\frac{1}{2}\)

b) \(\frac{x-1}{x+3}>0\)

\(=>x-1>0=>x>1\)

c) \(\frac{2x+2}{x-4}< 0\)

\(=>2x+2< 0=>x< -1\)

\(\left(x+1\right)\left(x+7\right)< 0\)

thì \(x+1;x+7\)khác dấu

 th1\(\hept{\begin{cases}x+1< 0\\x+7>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>-7\end{cases}\Rightarrow}-7< x< -1\left(tm\right)}\)

th2\(\hept{\begin{cases}x+1>0\\x+7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< -7\end{cases}\Rightarrow}-1< x< -7\left(vl\right)}\)

vậy với\(-7< x< -1\)thì \(\left(x+1\right)\left(x+7\right)< 0\)

16 tháng 7 2019

a) (2x - 3) = 5

<=> 2x - 3 = 5

<=> 2x = 5 + 3

<=> 2x = 8

<=> x = 4

=> x = 4

b) (5x - 3) = 1/2

<=> 5x - 3 = 1/2

<=> 5x = 1/2 + 3

<=> 5x = 7/2

<=> x = 7/10

=> x = 7/10

c) (x + 1)(x + 7) < 0

<=> x = -1; -7

<=> x < -7 <=> x = -8 <=> (-8 + 1)(-8 + 7) < 0 <=> 7 < 0 (loại)

<=> -7 < x < -1 <=> x = -6 <=> (-6 + 1)(-6 + 7) < 0 <=> -5 < 0 (nhận)

<=> x > -1 <=> x = 0 <=> (x + 1)(x + 7) < 0 <=> 7 < 0 (loại)

Vậy: -7 < x < -1

10 tháng 2 2019

\(\frac{x-2}{4}=\frac{-9}{2-x}\)

\(\Rightarrow\frac{x-2}{4}=\frac{9}{x-2}\)

\(\Rightarrow\left(x-2\right)^2=36\)

\(\Rightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}}\)

\(\frac{x}{15}=\frac{3}{y}\)

\(\Rightarrow xy=45\)

\(\Rightarrow x;y\inƯ\left(45\right)=\left\{\pm1;\pm3;\pm5;\pm9;\pm15;\pm45\right\}\)

Xét bảng 

x1(loại)-13(loại)-35(loại)-545-45(loại)15-15(loại)9-9(loại)
y45(loại)-4515(loại)-159(loại)-91-1(loại)3-3(loại)5-5(loại)

Vậy.......................................

d;Áp dụng tích chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)

\(\Rightarrow x=4.2=8\)

     \(y=3.2=6\)

10 tháng 7 2019

a) \(\frac{2}{5}:\left(2x+\frac{3}{4}\right)=-\frac{7}{10}\)

=> \(2x+\frac{3}{4}=-\frac{7}{10}:\frac{2}{5}\)

=> \(2x+\frac{3}{4}=-\frac{7}{4}\)

=> \(2x=\frac{-7}{4}-\frac{3}{4}\)

=> \(2x=-\frac{5}{2}\)

=> \(x=\frac{-5}{2}:2\)

=> \(x=\frac{-5}{4}\)

b) \(\frac{x+1}{3}=\frac{2-x}{2}\)

\(\Rightarrow2\left(x+1\right)=3\left(2-x\right)\)

\(\Rightarrow2x+2=6-3x\)

\(\Rightarrow2x-3x=6-2\)

\(\Rightarrow-x=4\)

\(\Rightarrow x=4\)

10 tháng 7 2019

c) \(\left|x-\frac{3}{5}\right|.\frac{1}{2}-\frac{1}{5}=0\)

\(\Rightarrow\left|x-\frac{3}{5}\right|.\frac{1}{2}=\frac{1}{5}\)

\(\Rightarrow\left|x-\frac{3}{5}\right|=\frac{1}{5}:\frac{1}{2}\)

\(\Rightarrow\left|x-\frac{3}{5}\right|=\frac{2}{5}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}=\frac{2}{5}\\x-\frac{3}{5}=-\frac{2}{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}+\frac{2}{5}\\x=\frac{3}{5}+-\frac{2}{5}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)

d) \(x^2-4x=0\)

Ta có : \(x^2-4x=0\)

\(\Rightarrow xx-4x=0\)

\(\Rightarrow x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=0+4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

\(a,-\frac{x}{4}=-\frac{9}{x}\)

\(x^2=36\)

\(x=\pm6\)

\(c,\frac{x}{4}=\frac{18}{x+1}\)

\(x^2+x=72\)

\(\left(x-8\right)\left(x+9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=8\\x=-9\end{cases}}\)

9 tháng 2 2018

a) Ta có : x/7 = 9/y = x.y = 7.9 = 63  và x > y

Lập bảng :

x921-3-7
y73-21-9

vậy : ...

9 tháng 2 2018

\(\frac{x}{7}=\frac{9}{y}\)

=\(\frac{xy}{7y}=\frac{9\cdot7}{7\cdot y}\)

\(\Rightarrow\)x=9,y=7 hay x=21 y=3

tương tự bạn có thể làm câu b

c\(\frac{x-4}{y-3}=\frac{4}{3}\)

\(\frac{\left(x-4\right)\cdot3}{\left(y-3\right)\cdot3}=\frac{\left(y-3\right)\cdot4}{\left(y-3\right)\cdot3}\)

\(\frac{x-4}{y-3}=\frac{4}{3}\)

\(\Rightarrow\)x=8,y=6

!

29 tháng 7 2019

Để \(\frac{2x-1}{x+2}>0\Rightarrow\hept{\begin{cases}2x-1< 0\\x+2< 0\end{cases}}\)hoặc \(\hept{\begin{cases}2x-1>0\\x+2>0\end{cases}}\)

Nếu \(\hept{\begin{cases}2x-1< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}2x< 1\\x< 0-2\end{cases}\Rightarrow}\hept{\begin{cases}x< \frac{1}{2}\\x< -2\end{cases}\Rightarrow}x< -2}\)

Nếu \(\hept{\begin{cases}2x-1>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}2x>1\\x>0-2\end{cases}\Rightarrow}\hept{\begin{cases}x>\frac{1}{2}\\x>-2\end{cases}}\Rightarrow x>\frac{1}{2}}\)

Vậy \(\orbr{\begin{cases}x< -2\\x>\frac{1}{2}\end{cases}}\)

b) Để \(\frac{3-x}{3+x}< 0\Rightarrow\hept{\begin{cases}3-x>0\\3+x< 0\end{cases}}\)hoặc \(\hept{\begin{cases}3-x>0\\3+x< 0\end{cases}}\)

Nếu \(\hept{\begin{cases}3-x>0\\3+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}\Rightarrow}-3< x< 3}\)

Nếu \(\hept{\begin{cases}3-x< 0\\3+x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}}}\Rightarrow3< x< -3\Rightarrow x\in\varnothing\)

Vậy \(-3< x< 3\)