K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

\(a)\) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)

\(\Leftrightarrow\)\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)=-4+4\)

\(\Leftrightarrow\)\(\frac{x+1+99}{99}+\frac{x+2+98}{98}+\frac{x+3+97}{97}+\frac{x+4+96}{96}=0\)

\(\Leftrightarrow\)\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)

\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)

Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)

Nên \(x+100=0\)

\(\Rightarrow\)\(x=-100\)

Vậy \(x=-100\)

Chúc bạn học tốt ~ 

24 tháng 6 2018

\(b)\) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)

\(\Leftrightarrow\)\(1-\frac{1}{x+1}=\frac{2008}{2009}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=1-\frac{2008}{2009}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{2009}\)

\(\Leftrightarrow\)\(x+1=2009\)

\(\Leftrightarrow\)\(x=2009-1\)

\(\Leftrightarrow\)\(x=2008\)

Vậy \(x=2008\)

Chúc bạn học tốt ~