K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

Đáp án A

Số cách để xếp 8 người vào bàn tròn là: 7!=5040

Để xếp sao cho hai nữ không ngồi cạnh nhau trước tiên ta xếp 5 nam trước: 4!=24

Giữa 5 nam có 5 chỗ trống, số cách để xếp 3 nữ vào 5 chỗ trống: nntTP8F1E56Y.png

Vậy xác suất để xếp sao cho hai nữ không ngồi cạnh nhau là:wiUQQ4NpP5u4.png

6 tháng 5 2018

29 tháng 9 2019

Đáp án B

18 tháng 5 2017

Số cách xếp quanh bàn tròn là \(n\left(\Omega\right)=9!\)

Kí hiệu A là biến cố : "Nam nữ ngồi xen kẽ nhau"

Ta có :

\(n\left(A\right)=4!5!\)\(P\left(A\right)=\dfrac{4!5!}{9!}\approx0,008\)

30 tháng 8 2017


3 tháng 11 2019

Chọn D

Gọi A là biến cố “ Xếp 7 người sao cho đứa trẻ ngồi giữa hai người đàn ông”

Ta có: 

Xếp thỏa mãn đề bài theo các bước sau:

+Cố định đứa trẻ vào 1 ghế.

+Vì đứa trẻ ngồi giữa 2 người đàn ông nên xếp 2 người đàn ông ngồi bên cạnh đứa trẻ

có:   A 4 2 (cách)

+Xếp 2 người đàn ông còn lại và 2 người đàn bà vào 4 ghế còn lại có: 4! (cách)

Vậy 

18 tháng 5 2017

Tổ hợp - xác suất

3 tháng 2 2019

Chọn B

Số cách xếp ngẫu nhiên là 5! cách.

Ta tìm số cách xếp thoả mãn:

+ Chọn 2 vị trí cạnh nhau (3,4) và (4,5) có 2 cách.

+ Xếp A và B vào 2 vị trí cạnh nhau vừa chọn có 2! cách.

+ Xếp 3 người còn lại có 3! cách.

Số cách xếp là 2.2!3!.  Xác suất cần tính bằng 

31 tháng 7 2017

Đáp án B

 Số phần tử KGM là: 9!. Mà số phần tử của biến cố các học sinh nữ luôn ngồi cạnh nhau là: 3!7! 

Xác suất để các học sinh nữ luôn ngồi cạnh nhau là:  3 ! 7 ! 9 !   =   1 12