Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(5\times x-123=12\)
\(\Rightarrow5\times x=135\)
\(\Rightarrow x=27\)
b) \(x+3x+5x+7x=96\)
\(\Rightarrow16x=96\)
\(\Rightarrow x=6\)
a) \(5\times x-123=12\)
\(5x=12+123\)
\(5x=135\)
\(x=135:5\)
\(x=27\)
________
b) \(x+3x+5x+7x=96\)
\(x\left(1+3+5+7\right)=96\)
\(x.16=96\)
\(x=96:16\)
\(x=6\)
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
a: Ta có: \(7x+25=144\)
\(\Leftrightarrow7x=119\)
hay x=17
b: Ta có: \(33-12x=9\)
\(\Leftrightarrow12x=24\)
hay x=2
c: Ta có: \(128-3\left(x+4\right)=23\)
\(\Leftrightarrow3\left(x+4\right)=105\)
\(\Leftrightarrow x+4=35\)
hay x=31
d: Ta có: \(71+\left(726-3x\right)\cdot5=2246\)
\(\Leftrightarrow5\left(726-3x\right)=2175\)
\(\Leftrightarrow726-3x=435\)
\(\Leftrightarrow3x=291\)
hay x=97
e: Ta có: \(720:\left[41-\left(2x+5\right)\right]=40\)
\(\Leftrightarrow41-\left(2x+5\right)=18\)
\(\Leftrightarrow2x+5=23\)
\(\Leftrightarrow2x=18\)
hay x=9
a) \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-15=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\3x-9=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=3\end{matrix}\right.\)
a. \(\left[{}\begin{matrix}2x+3=0\\5x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=3\end{matrix}\right.\)
b. \(\left[{}\begin{matrix}3x+1=0\\3x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=3\end{matrix}\right.\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
a: =>3x-9+26 chia hết cho x-3
=>\(x-3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)
=>\(x\in\left\{4;2;5;1;16;-10;29;-23\right\}\)
b: =>6x+38 chia hết cho 2x-3
=>6x-9+47 chia hết cho 2x-3
=>\(2x-3\in\left\{1;-1;47;-47\right\}\)
=>\(x\in\left\{2;1;25;-22\right\}\)
a) \(18-\left(2x+5\right)=9\)
\(2x+5=18-9\)
\(2x+5=9\)
\(2x=9-5\)
\(2x=4\)
\(x=2\)
a) \(18-\left(2x+5\right)=9\)
\(\Rightarrow2x+5=18-9=9\)
\(\Rightarrow2x=9-5=4\Rightarrow x=4:2=2\)
b) \(23x-4=32\Rightarrow23x=32+4=36\Rightarrow x=\dfrac{36}{23}\)
c) \(\left(3x+2\right)^2=64\)
\(\Rightarrow\left[{}\begin{matrix}3x+2=8\\3x+2=-8\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{10}{3}\end{matrix}\right.\)
d) \(x\left(2x-12\right)=0\Rightarrow6x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)