Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x.16 = 1024 => 2x = 1024:16 => 2x = 64 => 2x = 26 => x = 6
b, x17 = x
=> x17 - x = 0
=> x(x16-1)=0
=> x = 0 hoặc x16 - 1 = 0
=> x = 0 hoặc x16 = 1
=> x = 0 hoặc x = 1
c, (2x-2)3=64
=> (2x-2)3 = 43
=>2x-2=4
=>2x=6
=>X=3
d,(x-6)2 = (x-6)3
=> (x-6)2-(x-6)3=0
=> (x-6)2-[1-(x-6)] = 0
=> (x-6)2 = 0 hoặc 1 - (x-6) = 0
=> x - 6 = 0 hoặc x - 6 = 1
=> x = 6 hoặc x = 7
e, 3 + 2x-1 = 24-[42-(22-1)]
=> 3 + 2x-1 = 11
=> 2x-1 = 8
=> 2x-1 = 23
=>x-1=3
=>x=4
78.31+78.68+78
=78.31+78.68+78.1
=78.(31+68+1)
=78.100
=7800
1024:(22.7+22.25)
=1024:[22.(7+25)]
=1024:128
=8
24-[20-(5-1)2]
=24-[20-42]
=24-[20-16]
=24-4
=20
x3=64
=>x3=43
=>x=4
2x+1=128
2x.21=128
2x=128:2
2x=64
2x=26
=>x=6
a) \(2^{2x}.2^4=1024\)
\(2^{2x}=1024:2^4\)
\(2^{2x}=1024:16\)
\(2^{2x}=64\)
\(2^{2x}=2^6\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
vay \(x=3\)
b) \(2.3^x=10.3^{12}+8.27^4\)
\(2.3^x=2.5.3^{12}+2^3.\left(3^3\right)^4\)
\(2.3^x=2.5.3^{12}+2^3.3^{12}\)
\(2.3^x=2.3^{12}.\left(5+2^2\right)\)
\(2.3^x=2.3^{12}.9\)
\(2.3^x=2.3^{12}.3^2\)
\(2.3^x=2.3^{14}\)
\(\Rightarrow x=14\)
vay \(x=14\)
c) \(5^8.25^x+1=5^{17}\)
\(5^8.\left(5^2\right)^x+1=5^{17}\)
\(5^8.5^{2x}+1=5^{17}\)
\(5^{8+2x}=5^{17}-1\)
e) \(\left(2x-4\right)^5=\left(2x-4\right)^3\)
\(\left(2x-4\right)^5-\left(2x-4\right)^3=0\)
\(\left(2x-4\right)\left[\left(2x-4\right)^2-1\right]=0\)
\(\left(2x-4\right)\left(2x-4-1\right)\left(2x-4+1\right)=0\)
\(\left(2x-4\right)\left(2x-5\right)\left(2x-3\right)=0\)
\(\Rightarrow2x-4=0\)hoac \(\orbr{\begin{cases}2x-5=0\\2x-3=0\end{cases}}\)
\(\Rightarrow2x=4\)hoac \(\orbr{\begin{cases}2x=5\\2x=3\end{cases}}\)
\(\Rightarrow x=2\)hoac \(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{2}\end{cases}}\)
vay \(x=2\)hoac \(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{2}\end{cases}}\)
a) \(3^{x+1}.15=135\)
\(\Rightarrow3^{x+1}=9\)
\(\Rightarrow3^{x+1}=3^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
b) \(x+2x+2^2x+....+2^{2016}x=2^{2017}-1\\ \Rightarrow x\left(2+2^2+...+2^{2016}\right)=2^{2017}-1\\ \Rightarrow x\left(2^{2017}-2\right)=2^{2017}-1\)
c) \(x\left(x-1\right)+\left(x-1\right)^2=0\\ \Rightarrow x\left(x-1\right)+\left(x-1\right)\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+\left(x-1\right)\right)=0\\ \Rightarrow\left(x-1\right)\left(2x-1\right)=0\\ \Rightarrow\begin{cases}x-1=0\\2x-1=0\end{cases}\)
d) \(2^2.2^5\le2^{x-5}\le2^{10}\\ \Rightarrow2^7\le2^{x-5}\le2^{10}\)
\(2^{x+3}.2^{x+1}=1024\)
\(\Leftrightarrow2^x.2^3.2^x.2=1024\)
\(\Leftrightarrow2^{2x}.2^4=2^{10}\)
\(\Leftrightarrow2^{2x}=2^{10}:2^4\)
\(\Leftrightarrow2^{2x}=2^6\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
vậy x=3
chúc bn hok tốt
\(2^{x+3}.2^{x+1}=1024\)
\(\Leftrightarrow2^{x+3+x+1}=1024\)
\(\Leftrightarrow2^{2x+4}=2^{10}\)
\(\Rightarrow2x+4=10\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
HỌC TỐT NHA !
a,
13[x-9] = 169
=> x - 9 = 169/13
=> x - 9 = 13
=> x = 13+9
=> x = 22
b,
Viết lại đề:
7x+3 = 343
<=> 7x+3 = 73
=> x + 3 = 3
=> x = 3-3
=> x = 0
c,
230 + [16 + [x-5]] = 315 . 23
=> 230 + [16 + x - 5] = 315 . 8
=> 230 + 16 + x - 5 = 2520
=> 230 + 16 + x = 2520 + 5 = 2525
=> x = 2525 - 230 - 16 = 2279
d,
13.x - 32.x = 20171 - 12018
=> 13x - 9x = 2017 - 1
=> 4x = 2016
=> x = 504
a) 13 ( x-9 )=169
=> x-9 =169 : 13 =13
=> x=13+9 =22
b)\(7^{x+3}=343\)
\(7^x.7^3=343\)
\(7^x=343:7^3\)
\(7^x=1\Rightarrow x=1\)
c)230 + 16 +x -5 =315.8
241 +x =2520
x=2520-241=2279
d) 13x -\(3^2.x\)=2017-1
x(13-9)=2016
x.4=2016
x=2016:4
x=504
a) 2^x . 16^2 = 1024 b) 64 . 4^x = 16^8 c) 2^x = 16
=> 2^x . 256 = 1024 => 64 . 4^x = (4^2) ^ 8 => 2^x = 2^4
=> 2^x = 1024 : 256 => 4^3 . 4^x = 4^16 => x = 4
=> 2^x = 4 => 4^x = 4^16 : 4^3
=> 2^x = 2^2 => 4^x = 4^13
=> x = 13
=> x = 2
a) \(2^x.16^2=1024\Rightarrow2^x=1024:16^2=2^{10}:\left(2^4\right)^2=2^{10}:2^8=2^2\)\(\Rightarrow x=2\)
b) \(64.4^x=16^8\Rightarrow4^x=16^8:64=\left(4^2\right)^8:4^3=4^{16}:4^3=4^{13}\Rightarrow x=13\)
c)\(2^x=16\Rightarrow2^x=2^4\Rightarrow x=4\)
+) \(x^2=121\)
\(\Rightarrow\orbr{\begin{cases}x^2=11^2\\x^2=\left(-11\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)
Vậy x = 11 hoặc x = -11
+) \(2^{x+3}=1024\)
\(\Rightarrow2^{x+3}=2^{10}\)
\(\Rightarrow x+3=10\)
\(\Rightarrow x=10-3\)
\(\Rightarrow x=7\)
Vậy x = 7
+) \(5^{x+1}=625\)
\(\Rightarrow5^{x+1}=5^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=4-1\)
\(\Rightarrow x=3\)
Vậy x = 3
_Chúc bạn học tốt_