Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)3.x^2 - 75 = 0
3.x^2 - 3.25 = 0
3.(x^2-25)=0
x^2-5^2=0
(x-5)(x+5)=0
=> x-5=0 hoặc x+5=0
=> x=5 hoặc x=-5
1) \(3x^2-75=0\)
\(\Leftrightarrow3\left(x^2-25\right)=0\)
\(\Leftrightarrow x^2-25=0\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm\sqrt{25}=\pm5\)
2) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
3) \(x^3+3x^2+3x=0\)
\(\Leftrightarrow x^3+3x^2+3x+1=1\)
\(\Leftrightarrow\left(x+1\right)^3=1^3\)
\(\Leftrightarrow x+1=1\Leftrightarrow x=0\)
Câu a : ( Mình nghĩ đề sai )
Câu b : \(x^3-3x^2+3x-1=\left(x-1\right)^3=\left(x-1\right)\left(x-1\right)\left(x-1\right)\)
Câu c : \(\dfrac{1}{27}+x^3=\left(\dfrac{1}{3}\right)^3+x^3=\left(\dfrac{1}{3}+x\right)\left(\dfrac{1}{9}-\dfrac{1}{3}x+x^2\right)\)
Câu d : \(0,001-1000x^3=\left(\dfrac{1}{10}\right)^3-\left(10x\right)^3=\left(\dfrac{1}{10}-10x\right)\left(\dfrac{1}{100}+x+100x^2\right)\)
Chúc bạn học tốt
a: Sửa đề: \(27x^3-27x^2+9x-1\)
\(=\left(3x-1\right)^3\)
b: \(=\left(x-1\right)^3\)
c: \(=\left(x+\dfrac{1}{3}\right)\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)
3x2-27x=0
<=> 3x(x-9)=0
\(\Rightarrow\orbr{\begin{cases}3x=0\\x-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=9\end{cases}}}\)
Vậy x=0 hoặc x=9
Theo đầu bài ta thấy :
\(3x^2=27x\)( vì 2 số giống nhau trừ đi nhau bằng 0 )
\(x^2:x=27:3\)
\(x=9\)
Vậy x = 9
1. a) 1012 - 992 = (101 + 99)(101 - 99) = 200 . 2 = 400
b) 98.102 = (100 - 2)(100 + 2) = 1002 - 4 = 10000 - 4 = 9996
c) 772 + 232 + 77.46 = 772 + 232 + 77.23.2 = (23 + 77)2 = 1002 = 10000
d) M = x3 + 9x2 + 27x + 27 = (x + 3)3 = (7 + 3)3 = 103 = 1000
2. a) 2x2 + 3x - 5 = 0
=> 2x2 + 5x - 2x - 5 = 0
=> x(2x + 5) - (2x + 5) = 0
=> (x - 1)(2x + 5) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
b) 2x2 - 11x - 51 = 0
=> 2x2 - 17x + 6x - 51 = 0
=> x(2x - 17) + 3(2x - 17) = 0
=> (x + 3)(2x - 17) = 0
=> \(\orbr{\begin{cases}x+3=0\\2x-17=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-3\\x=\frac{17}{2}\end{cases}}\)
a) 1012 - 992 = (101-99)(101+99)= 2,200 = 4002
b)98.102 = (100-2)(100+2) = 1002 - 22 =10000 - 4 = 9996
c) 772 + 232 +77.46 = 772 + 232 +2.77.23 = ( 77+23)2 = 1002 =1000
d) Với x=7 => M = 73+ 9.73 + 27.7 + 27 = 10.73 +27.8 = 10.343 + 216 = 3430+216 = 3646
2. a) 2x2 + 3x -5 =0
=> 2(x2 +3/2 x +9/16) -49/8 = 0
=> 2 (x+3/4)2 =49/8
=> (x+3/4)2 =49/16 = (7/4)2 = (-7/4)2
=> x+3/4 = 7/4 hoặc x+3/4 = -7/4
=> x= 1 hoặc x=-5/2
b) 2x2 -11x - 51 =0
=> 2(x2 -11/2x + 121/16) -529/8 = 0
=> (x -11/4)2 = 529/16 = (23/4)2 =(-23/4)2
=> x-11/4=23/4 hoặc x-11/4 = -23/4
=> x=17/2 hoặc x=-3
\(a.x^4-16x^2=0\Leftrightarrow\left(x^2+4x\right)\left(x^2-4x\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+4=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)
\(b.\left(x-5\right)^3-x+5=0\)
\(\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
a) x4 - 16x2 = 0
<=> x2 ( x2 - 16 ) = 0
<=> \(\left[{}\begin{matrix}x^2=0\\x^2-16=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)
Vậy...
b) ( x - 5)3 - x + 5 = 0
<=> ( x - 5)3 - (x - 5) = 0
<=> (x - 5) [ (x - 5)2 - 1] =0
<=> \(\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=5\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
Vậy...
c) 5(x - 2) = x2 - 4
<=> 5(x - 2) - (x2 - 4) = 0
<=> (x - 2)( 5 - x - 2) = 0
<=> (x - 2)( 3 - x ) = 0
<=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy...
d) x - 3 = (3 - x)2
<=> x - 3 - (x - 3)2 = 0
<=> (x - 3)(1 - x + 3) = 0
<=> (x - 3)( 4 - x ) = 0
<=> \(\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy...
e) x2 (x - 5) + 5 - x = 0
<=> x2 (x - 5) - (x - 5) = 0
<=> (x2 - 1)( x - 5) = 0
<=> \(\left[{}\begin{matrix}\left(x-1\right)\left(x+1\right)=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)
,
a: \(\Leftrightarrow x^2\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x^2\left(x+4\right)\left(x-3\right)=0\)
hay \(x\in\left\{0;-4;3\right\}\)
d: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)=0\)
hay \(x\in\left\{-6;1;-1;-4\right\}\)
f: \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-24=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
hay \(x\in\left\{-3;2\right\}\)