Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này mih biết làm nhưng pp nhẩm nghiệm là sao bạn
bạn có thể cho mih vd đi\ược ko
1.
a) khong bit bạn xem đề sai k
b) x2 -4x +4 - (x+3)(x-3) = 0
<=> x2 -4x + 4 - x2 +9 = 0
<=> -4x = -13 <=> x= 13/4
c) x2 -3x +2 = 0
<=> x2 -x -2x +2 = 0
<=> x(x-1) - 2( x-1) = 0
<=> (x-1)(x-2) = 0 <=> x = 1 hoặc 2
2.
a) x4 -8 = (x2 -4)(x2 +4) = (x-2)(x+2)(x2 +4)
b)x2 -y2 -2x+2y = (x-y)(x+y) - 2(x-y) = (x-y)(x+y-2)
c)x2 - 5x +6 = x2 -3x -2x +6 = x(x-3) - 2(x-3) = (x-2)(x-3)
a) \(\left(3x-1\right)^2+ \left(x+3\right)^2-5\left(2x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow-15x+55=0\)
\(\Leftrightarrow-15x=0-55\)
\(\Leftrightarrow-15x=-55\)
\(\Leftrightarrow x=\frac{-55}{-15}\)
\(\Rightarrow x=\frac{11}{3}\)
b) \(x^2-4x+4-\left(x+3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x^2-4x-\left(x+3\right)\left(x-3\right)=4-0\)
\(\Leftrightarrow x^2-4x-\left(x+3\right)\left(x-3\right)=4\)
\(\Leftrightarrow4x+9=4\)
\(\Leftrightarrow4x=4+9\)
\(\Leftrightarrow4x=13\)
\(\Rightarrow x=\frac{13}{4}\)
a) Ta thấy x = 1 là nghiệm của \(f\left(x\right)=3x^3-x^2+2x-4\) nên \(f\left(x\right)\) sẽ có dạng \(f\left(x\right)=\left(x-1\right)\left(ax^2+bx+c\right)\)
Bằng cách chia f(x) cho x - 1 được các hệ số tương ứng : a = 3 , b = 2 , c =4
=> f(x) = (x-1)(3x2+2x+4)
b) Tương tự, ta cũng phân tích được : x3-100x2+50x+49=(x-1)(x2-99x-49)
Mình nghĩ vậy thôi .Sorry nha . Tại vì tìm x thì phải bằng bao nhiêu chứ
a, 3x3-3x2+5x+11=0
<=>3x3+3x2-6x3-6x+11x+11=0
<=>3x2.(x+1)-6x.(x+1)+11.(x+1)=0
<=>(x+1)(3x2-6x+11)=0
=>x+1=0 hoặc 3x2-6x+11=0
*x+1=0 <=> x=-1
*3x2-6x+11=0
<=>2x2+x2-6x+9+2=0
<=>2x2+(x-3)2+2=0 (vô lí)
Vậy tập nghiêm của PT là S={-1}
b, 2x3-x2+3x-4=0
<=>2x3-2x2+x2-x+4x-4=0
<=>2x2.(x-1)+x.(x-1)+4.(x-1)=0
<=>(x-1)(2x2+x+4)=0
<=>x-1=0 hoặc 2x2+x+4=0
*x-1=0 <=>x=1
*2x2+x+4=0
<=>x2+x2+x+1+3 = 0 ( vô lí vì \(x^2+x+1>0\)(bình phương thiếu) )
Vậy tập nghiệm của PT là S={1}
1.a) 2x4-4x3+2x2
=2x2(x2-2x+1)
=2x2(x-1)2
b) 2x2-2xy+5x-5y
=2x(x-y)+5(x-y)
=(2x+5)(x-y)
2.
a) 4x(x-3)-x+3=0
=>4x(x-3)-(x-3)=0
=>(4x-1)(x-3)=0
=> 2 TH:
*4x-1=0 *x-3=0
=>4x=0+1 =>x=0+3
=>4x=1 =>x=3
=>x=1/4
vậy x=1/4 hoặc x=3
b) (2x-3)^2-(x+1)^2=0
=> (2x-3-x-1).(2x-3+x+1)=0
=>(x-4).(3x-2)=0
=> 2 TH
*x-4=0
=> x=0+4
=> x=4
*3x-2=0
=>3x=0-2
=>3x=-2
=>x=-2/3
vậy x=4 hoặc x=-2/3
1) (x + 2)(x - 2) - (x + 3)(x + 1)
= x^2 - 4 - (x - 3)(x + 1)
= x^2 - 4 - x^2 + 2x + 3
= 2x - 1
2) a) 5(x - y) - 3x(y - x)
= 5x - 5y - 3x(y - x)
= 5x - 5y - 3xy + 3x2
b) 5x^2 - 16 + 3
= (5x^2 - x) + (-15x + 3)
= x(5x - 1) - 3(5x - 1)
= (5x - 1)(x - 3)
3) a) 2x(x + 3) + 12 - 2x^2 = 0
<=> 2x(x + 3) + 12 - 2x^2 = 0 - 12
<=> 2x(x + 3) - 2x^2 = -12
<=> x = -2
b) x^3 - 16x = 0
<=> x(x + 4)(x - 4) = 0
<=> x = 0
<=> x = 0; x = +- 4
c) (2x - 1)^2 = (x + 3)^2
<=> 4x^2 - 4x + 1 = x^2 + 6x + 9
<=> 4x^2 - 4x + 1 = x^2 + 6x + 9 - 9
<=> 4x^2 - 4x - 8 = x^2 + 6x
<=> 4x^2 - 4x - 8 = x^2 + 6x - 6x
<=> 4x^2 -10x - 8 = x^2
<=> 3x^2 - 10x - 8 = 0
<=> x = 4, x = -2/3
d) x^2 - x - 6 = 0
<=> x = -2; x = 3
\(\left(x+2\right)\left(x-2\right)-\left(x+3\right)\left(x+1\right)\)
\(=x^2-4-\left(x^2+4x+3\right)\)
\(=x^2-4-x^2-4x-3\)
\(=-4x-7\)
Bài 1:
a) 2x^2 -3x + 1 = 2x^2 -2x -x +1 = 2x.(x-1) - (x-1) = (x-1).(2x-1)
b) 2x^3y - 2xy^3 - 4xy^2 - 2xy = 2xy.(x^2 - y^2 - 2y -1) = 2xy.[ x^2 - (y^2 + 2y+1)] = 2xy.[x^2 - (y+1)^2]
= 2xy.(x-y-1).(x+y+1)
c) (x^2 + x+3).(x^2 + x +5) - 8 = (x^2+x+4-1).(x^2+x+4+1) - 8 = (x^2+x+4)^2 - 1 - 8 = (x^2+x+4)^2 - 3^2
= (x^2+x+4-3).(x^2+x+4+3) = (x^2+x+1).(x^2+x+7)
Bài 2:
a) (x+2).(x^2-2x+4) - (x^3+2x) = 0
x^3 + 8 - x^3 - 2x = 0
8 - 2x = 0
x = 4
b) x^2 - 2x - 8 = 0
x^2 +2x - 4x - 8 = 0
x.(x+2) - 4.(x+2) = 0
(x+2).(x-4) = 0
...
bn tự làm tiếp nha
a: \(2x^3+x^2-13x+6\)
\(=2x^3-4x^2+5x^2-10x-3x+6\)
\(=\left(x-2\right)\left(2x^2+5x-3\right)\)
\(=\left(x-2\right)\left(2x^2+6x-x-3\right)\)
\(=\left(x-2\right)\left(x+3\right)\left(2x-1\right)\)
b: \(2x^2+y^2-6x+2xy-2y+5=0\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-4x+4-2x-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2-2\left(x+y\right)+1=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(x+y-1\right)^2=0\)
=>x-2=0 và x+y-1=0
=>x=2 và y=-1
a)\(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow2x^3+2x+3x^2+3=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\x^2+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x=-3\\x^2+1>0\left(loai\right)\end{array}\right.\)
\(\Leftrightarrow x=-\frac{3}{2}\)
b)\(x\left(2x-1\right)\left(1-2x\right)=0\)
\(\Leftrightarrow-x\left(2x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow-x\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\\left(2x-1\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\2x=1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\end{array}\right.\)
\(2x^3+3x^2+2x+3=0\)
\(2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\left(2x+3\right)\left(x^2+1\right)=0\)
\(2x+3=0\left(x^2+1\ge1>0\right)\)
\(2x=-3\)
\(x=-\frac{3}{2}\)
\(x\left(2x-1\right)\left(1-2x\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\2x-1=0\\1-2x=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\2x=1\\2x=1\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\end{array}\right.\)