Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow-2x=-\dfrac{1}{3}-\dfrac{1}{8}-\dfrac{5}{7}=-\dfrac{197}{168}\)
hay x=197/336
c: \(\Leftrightarrow5x=9+\dfrac{6}{18}-\dfrac{2}{7}=\dfrac{190}{21}\)
hay x=38/21
a) (2x - 3)(6 - 2x) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)
c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)
d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)
a) Ta có: \(\left(2x-5\right)^3=216\)
\(\Leftrightarrow2x-5=6\)
\(\Leftrightarrow2x=11\)
hay \(x=\dfrac{11}{2}\)
b) Ta có: \(2x-3⋮x+4\)
\(\Leftrightarrow-11⋮x+4\)
\(\Leftrightarrow x+4\in\left\{1;-1;11;-11\right\}\)
hay \(x\in\left\{-3;-5;7;-15\right\}\)
Alo, sugeni two wai phem. Si ga no, you woo be the me that nas te, ai gi da
a,(2x+7)+135=0 b, 1/2x-2/5=1/5
2x+7=0-135 1/2x=1/5+2/5
2x+7=-135 1/2x=3/5
2x=-135-7 x=3/5:1/2
2x=-142 x=6/5
x=-142:2 Vậy x=6/5
x=-71
Vậy x=-71
c, 10-|x+1|=5 d, 1/2x+150%x=2014
|x+1|=10-5 2x=2014
|x+1|=5 x=2014:2
*TH1:x+1=5 *TH2:x+1=-5 x=1007
x=5-1 x=-5-1 Vậy x=1007
x=4 x=-6
Vậy x=4 hoặc x=-6
b: \(\dfrac{5}{7}-\dfrac{2}{3}\cdot x=\dfrac{4}{5}\)
=>\(\dfrac{2}{3}x=\dfrac{5}{7}-\dfrac{4}{5}=\dfrac{25-28}{35}=\dfrac{-3}{35}\)
=>\(x=-\dfrac{3}{35}:\dfrac{2}{3}=\dfrac{-3}{35}\cdot\dfrac{3}{2}=-\dfrac{9}{70}\)
c: \(\dfrac{1}{2}x+\dfrac{3}{5}x=-\dfrac{2}{3}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{3}{5}\right)=-\dfrac{2}{3}\)
=>\(x\cdot\dfrac{5+6}{10}=\dfrac{-2}{3}\)
=>\(x\cdot\dfrac{11}{10}=-\dfrac{2}{3}\)
=>\(x=-\dfrac{2}{3}:\dfrac{11}{10}=-\dfrac{2}{3}\cdot\dfrac{10}{11}=\dfrac{-20}{33}\)
d: \(\dfrac{4}{7}\cdot x-x=-\dfrac{9}{14}\)
=>\(\dfrac{-3}{7}\cdot x=\dfrac{-9}{14}\)
=>\(\dfrac{3}{7}\cdot x=\dfrac{9}{14}\)
=>\(x=\dfrac{9}{14}:\dfrac{3}{7}=\dfrac{9}{14}\cdot\dfrac{7}{3}=\dfrac{3}{2}\)
a, \(\dfrac{6}{x-3}=\dfrac{9}{2x-7}\)
=> 6(2x-7) = 9(x-3)
=> 12x - 42 = 9x - 27
=> 12x - 9x = -27 + 42
=> 3x = 15
=> x = 5
Vậy x = 5
b, \(\dfrac{-7}{x+1}=\dfrac{6}{x+27}\)
=> -7(x + 27) = 6(x + 1)
=> -7x - 189 = 6x + 6
=> -7x - 6x = 6 + 189
=> -13x = 195
=> x = -15
Vậy x = -15
a) Ta có: \(\dfrac{6}{x-3}=\dfrac{9}{2x-7}\)
\(\Leftrightarrow6\left(2x-7\right)=9\left(x-3\right)\)
\(\Leftrightarrow12x-42=9x-27\)
\(\Leftrightarrow12x-9x=-27+42\)
\(\Leftrightarrow3x=15\)
hay x=5
Vậy: x=5
b) Ta có: \(\dfrac{-7}{x+1}=\dfrac{6}{x+27}\)
\(\Leftrightarrow6\left(x+1\right)=-7\left(x+27\right)\)
\(\Leftrightarrow6x+6=-7x+189\)
\(\Leftrightarrow6x+7x=189-6\)
\(\Leftrightarrow13x=183\)
hay \(x=\dfrac{183}{13}\)
Vậy: \(x=\dfrac{183}{13}\)
a; - \(\dfrac{1}{3}\).(15\(x-9\)) + \(\dfrac{2}{7}\).(- \(x-34\)) = 1 - \(\dfrac{3}{4}\).(-16\(x+4\))
- 5\(x\) + 3 - \(\dfrac{2}{7}\)\(x\) - \(\dfrac{68}{7}\) = 1 + 12\(x\) - 3
12\(x\) + 5\(x\) + \(\dfrac{2}{7}x\) = 3 - \(\dfrac{68}{7}\) - 1 + 3
17\(x\) + \(\dfrac{2}{7}x\) = (3 - 1 + 3) - \(\dfrac{68}{7}\)
\(\dfrac{121}{7}\)\(x\) = 5 - \(\dfrac{68}{7}\)
\(\dfrac{121}{7}\) \(x\) = - \(\dfrac{33}{7}\)
\(x\) = - \(\dfrac{33}{7}\): \(\dfrac{121}{7}\)
\(x\) = - \(\dfrac{3}{11}\)
Vậy \(x\) = - \(\dfrac{3}{11}\)
a)vi (2x-6)^7=(2x-6)^5
=>2x-6=0 hoac 2x-6=1
=>x=3hoac x=7/2
b)(7-2x)^9=(7-2x)^3
=>7-2x=0 hoac 7-2x=1
=>x=7/2 hoac x=3
a) \(\left(2x-6\right)^7=\left(2x-6\right)^5\)
\(\Leftrightarrow\left[2\left(x-3\right)\right]^7=\left[2\left(x-3\right)\right]^5\)
\(\Leftrightarrow2^7\left(x-3\right)^7=2^5\left(x-3\right)^5\)
\(\Leftrightarrow128\left(x-3\right)^7=32\left(x-3\right)^5\)
\(\Leftrightarrow4\left(x-3\right)^7=\left(x-3\right)^5\)
\(\Leftrightarrow4\left(x-3\right)^7-\left(x-3\right)^5=0\)
\(\Leftrightarrow\left(x-3\right)^5\left[4\left(x-3\right)-1\right]=0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\4\left(x-3\right)-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=\frac{7}{2}\\x=\frac{5}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=\frac{7}{2}\\x=\frac{5}{2}\end{cases}}\)