K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

Bn xem lại đề xem sao chứ chưa có kết quả chưa tìm đc x đâu nha

Ta có: \(x\left(x-4\right)+1=3x-5\)

\(\Leftrightarrow x^2-4x+1-3x+5=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\)

21 tháng 9 2021

x(x - 4) + 1 = 3x - 5

<=> x2 - 4x + 1 = 3x - 5

<=> x2 - 4x - 3x + 1 + 5 = 0

<=> x2 - 7x + 6 = 0

<=> x2 - 6x - x + 6 = 0

<=> x(x - 6) - (x - 6) = 0

<=> (x - 1)(x - 6) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=6\end{matrix}\right.\)

a: =>x^2-25-x^2-3x=10

=>-3x=35

=>x=-35/3

b: =>4x^2-9-4(x^2+4x+4)=5

=>4x^2-9-4x^2-16x-16-5=0

=>-16x-30=0

=>x=-15/8

c: =>9x^2+45x-9x^2+4=7

=>45x=3

=>x=1/15

d: =>x^3+3x^2+3x+1-x^3-3x^2+5x=8

=>8x=7

=>x=7/8

30 tháng 10 2023

a: ĐKXD: x<>0

\(\dfrac{14x^3+12x^2-14x}{2x}=\left(x+2\right)\left(3x-4\right)\)

=>\(\dfrac{2x\left(7x^2+6x-7\right)}{2x}=\left(x+2\right)\left(3x-4\right)\)

=>\(7x^2+6x-7=3x^2-4x+6x-8\)

=>\(7x^2+6x-7=3x^2+2x-8\)

=>\(4x^2+4x+1=0\)

=>\(\left(2x+1\right)^2=0\)

=>2x+1=0

=>x=-1/2(nhận)

b: \(\left(4x-5\right)\left(6x+1\right)-\left(8x+3\right)\left(3x-4\right)=15\)

=>\(24x^2+4x-30x-5-\left(24x^2-32x+9x-12\right)=15\)

=>\(24x^2-26x-5-24x^2+23x+12=15\)

=>-3x+7=15

=>-3x=8

=>\(x=-\dfrac{8}{3}\)

8 tháng 9 2021

x2x2 là sao bn

4 tháng 9 2021

a) \(x\left(5-2x\right)-2x\left(1-x\right)=15\\ \Leftrightarrow5x-2x^2-2x+2x^2=15\\ \Leftrightarrow3x=15\\ \Leftrightarrow x=5\)

Vậy x = 5 là nghiệm của pt.

b) \(\left(3x+2\right)^2+\left(1+3x\right)\left(1-3x\right)=2\\ \Leftrightarrow\left(9x^2+12x+4\right)+1-9x^2=2\\ \Leftrightarrow12x+5=2\\ \Leftrightarrow12x=-3\\ \Leftrightarrow x=\dfrac{-1}{4}\)

Vậy \(x=-\dfrac{1}{4}\) là nghiệm của pt.

16 tháng 11 2021

\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)

\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)

23 tháng 7 2023

a) \(\left(x+1\right)^3-\left(x-1\right)^3-6\cdot\left(x-1\right)^2=10\)

\(\Rightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x^2-2x+1\right)=10\)

\(\Rightarrow6x^2+2-6x^2+12x-6=10\)

\(\Rightarrow12x-4=10\)

\(\Rightarrow12x=14\)

\(\Rightarrow x=\dfrac{7}{6}\)

b) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=42\)

\(\Rightarrow x\left(x^2-25\right)-\left(x^3+8\right)=42\)

\(\Rightarrow x^3-25x-x^3-8=42\)

\(\Rightarrow-25x-8=42\)

\(\Rightarrow-25x=50\)

\(\Rightarrow x=\dfrac{50}{-25}=-2\)

c) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)

\(\Rightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)

\(\Rightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)

\(\Rightarrow24x+25=49\)

\(\Rightarrow24x=24\)

\(\Rightarrow x=\dfrac{24}{24}=1\)

18 tháng 10 2021

\(a,\Rightarrow2x^2-18x-2x^2=0\\ \Rightarrow-18x=0\Rightarrow x=0\\ b,\Rightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\\ \Rightarrow5x=22\Rightarrow x=\dfrac{22}{5}\)

27 tháng 6 2021

\(a,=3x-9-4x+12=-x+3=0\)

\(\Leftrightarrow x=3\)

Vậy ..

\(b,=\left(x+2\right)\left(x+2-x+2\right)=4\left(x+2\right)=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy ..

\(c,=x^3-3x^2+3x-1=\left(x-1\right)^3=0\)

\(\Leftrightarrow x=1\)

Vậy ..

\(d,\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy ..

\(e,=\left(2x-3-5\right)\left(2x-3+5\right)=\left(2x-8\right)\left(2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}=4\\x=-\dfrac{2}{2}=-1\end{matrix}\right.\)

Vậy ...

a) Ta có: 3(x-3)-4x+12=0

\(\Leftrightarrow3\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow x-3=0\)

hay x=3

Vậy: S={3}

b) Ta có: \(\left(x+2\right)^2-\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4=0\)

\(\Leftrightarrow4x=-8\)

hay x=-2

Vậy: S={-2}

c) Ta có: \(x^3+3x=3x^2+1\)

\(\Leftrightarrow x^3-3x^2+3x-1=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: S={1}

d) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy: S={0;2;-2}