Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2x-3\right)-\left(x-5\right)=\left(x+2\right)-\left(x-1\right)\)
\(\Leftrightarrow2x-3-x+5=x+2-x+1\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
b) Ta có: \(2\left(x-1\right)-5\left(x+2\right)=-10\)
\(\Leftrightarrow2x-2-5x-10=-10\)
\(\Leftrightarrow-3x=-10+10+2=2\)
hay \(x=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
a, (2x - 3) - (x - 5) = (x + 2) - (x - 1)
2x - 3 - x + 5 = x + 2 - x + 1
(2x - x) + (-3 + 5) = (x - x) + (2 + 1)
x + 2 = 3
x = 1
\(\left|3x+5\right|=x+1\)
TH1: \(3x+5=x+1\left(x\ge-\dfrac{5}{3}\right)\)
\(\Rightarrow3x-x=1-5\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\left(ktm\right)\)
TH2: \(3x-5=-\left(x+1\right)\left(x< -\dfrac{5}{3}\right)\)
\(\Rightarrow3x-5=-x-1\)
\(\Rightarrow3x+x=-1+5\)
\(\Rightarrow4x=4\)
\(\Rightarrow x=1\)
Vậy không có x thõa mãn
_______
\(\left|2x-3\right|=2x-3\)
\(\Rightarrow2x-3=2x-3\left(x\ge\dfrac{3}{2}\right)\)
\(\Rightarrow0=0\) (luôn đúng)
Nên mọi x đề thỏa mãn khi \(x\ge\dfrac{3}{2}\)
Vậy: ...
|3x + 5| = x + 1
TH1: x ≥log ) -5/3
(1) ⇒ 3x + 5 = x + 1
3x - x = 1 - 5
2x = -4
x = -2 (loại)
*) TH2: x < -5/3
(1) ⇒ 3x + 5 = -x - 1
3x + x = -1 - 5
4x = -6
x = -3/2 (loại)
Vậy không tìm được x thỏa mãn yêu cầu
--------
|2x - 3| = 2x - 3 (2)
*) TH1: x 3/2
(2) ⇒ 2x - 3 = 2x - 3
0x = 0 (luôn đúng với mọi x ≥ 3/2)
*) TH2: x < 3/2
(2) ⇒ 2x - 3 = 3 - 2x
2x + 2x = 3 + 3
4x = 6
x = 3/2 (loại)
Vậy x ≥ 3/2
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a) |2x-3|+x=21
|2x-3|=21-x
\(\Rightarrow\)\(\orbr{\begin{cases}2x-3=21-x\\2x-3=-\left(21-x\right)\end{cases}}\)
TH1: 2x-3=21-x
2x-x=21+3
x=24
TH2: 2x-3=-(21-x)
2x-3 = -21+x
2x-x=-21+3
x=-18
Vậy x \(\varepsilon\){-18;24}
ta có \(\frac{2}{3}+2x=\frac{1}{2}\)
<=>\(2x=\frac{1}{2}-\frac{2}{3}\)
<=>\(2x=\frac{3}{6}-\frac{4}{6}\)
<=>\(2x=-\frac{1}{6}\)
<=>\(x=-\frac{1}{6}:2\)
<=>\(x=-\frac{1}{12}\)
Vậy \(x=-\frac{1}{12}\)
\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)
\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)
\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)
\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)
\(\Leftrightarrow x=-\frac{6}{11}\)
d,e,f Tương tự
a) \(A=\left|x-5\right|+\left|x-7\right|=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)
\(minA=2\Leftrightarrow\)\(7\ge x\ge5\)
b) \(B=\left|2x+1\right|+\left|2x-2\right|=\left|2x+1\right|+\left|2-2x\right|\ge\left|2x+1+2-2x\right|=\left|3\right|=3\)
\(minB=3\Leftrightarrow1\ge x\ge-\dfrac{1}{2}\)
\(\left(2x-3\right)\left(1^5-x\right)\)
Đa thức có nghiệm <=> \(\left(2x-3\right)\left(1^5-x\right)=0\)
<=> \(\orbr{\begin{cases}2x-3=0\\1^5-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=3\\1-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}\)
Vậy nghiệm của đa thức là 3/2 và 1
Bạn cho từng cái ngoặc ở mỗi câu bằng 0 là được mà.
Còn câu c thì tách ra như sau: x(x-2) = 0 rồi cũng làm tương tự 2 câu kia.
a) Ta có: \(\left(2x-1\right)\left(5-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\5-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=1\\x=5\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
Vậy \(x=\frac{1}{2};x=5\) là \(n_o\) của đa thức.
b,c,d làm t/tự.