\(^2\)-x(x+2)-1=2

b, x\(^2\)=(2x-1)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

\(x^2-x^2-2x-1-2=0\)

\(-2x-3=0\Leftrightarrow x=\dfrac{-2}{3}\)

\(\left(x-2x+1\right)\left(x+2x-1\right)=0\)

\(\left[{}\begin{matrix}-x+1=0\\3x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

19 tháng 10 2021

a)\(x^2-x\left(x+2\right)-1=2\\ \Rightarrow x^2-x^2-2x-1=2\\ \Rightarrow-2x=3\\ \Rightarrow x=-\dfrac{3}{2}\)

b) \(x^2=\left(2x-1\right)^2\\ \Rightarrow\left[{}\begin{matrix}x=2x-1\\x=1-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

29 tháng 11 2016

sửa lại :

1) ...; \(\div x-2\) dư 4

30 tháng 11 2016

giúp e vs các a cj soyeon_Tiểubàng giải

Phương An

Hoàng Lê Bảo Ngọc

Nguyễn Huy Tú

Silver bullet

Nguyễn Như Nam

Nguyễn Trần Thành Đạt

Nguyễn Huy Thắng

Võ Đông Anh Tuấn

 

1, Thực hiện phép tính : a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\) b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\) c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\) d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\) e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\) f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\) g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\) h, \(\dfrac{2}{x+y}\)...
Đọc tiếp

1, Thực hiện phép tính :

a, \(\dfrac{2x+4}{10}\) + \(\dfrac{2-x}{15}\)

b, \(\dfrac{3x}{10}\) + \(\dfrac{2x-1}{15}\) + \(\dfrac{2-x}{20}\)

c, \(\dfrac{x+1}{2x-2}\) + \(\dfrac{x^2+3}{2-2x^2}\)

d, \(\dfrac{1-2x}{2x}\) + \(\dfrac{2x}{2x-1}\) + \(\dfrac{1}{2x-4x^2}\)

e, \(\dfrac{x}{xy-y^2}\) + \(\dfrac{2x-y}{xy-x^2}\)

f, \(\dfrac{x^2}{x^2-4x}\) + \(\dfrac{6}{6-3x}\) +\(\dfrac{1}{x+2}\)

g, \(\dfrac{2x^2-10xy}{2xy}\) + \(\dfrac{5y-x}{y}\) + \(\dfrac{x+2y}{x}\)

h, \(\dfrac{2}{x+y}\) +\(\dfrac{1}{x-y}\) + \(\dfrac{-3x}{x^2-y^2}\)

i, x+y+ \(\dfrac{x^2+y^2}{x+y}\)

2, Thực hiện phép tính :

a, \(\dfrac{2x}{x^2+2xy}\) + \(\dfrac{y}{xy-2y^2}\)+ \(\dfrac{4}{x^2-4y^2}\)

b, \(\dfrac{1}{x-y}\) + \(\dfrac{3xy}{y^3-x^3}\) + \(\dfrac{x-y}{x^2+xy+y^2}\)

c, \(\dfrac{2x+y}{2x^2-xy}\) + \(\dfrac{16x}{y^2-4x^2}\) + \(\dfrac{2x-y}{2x^2+xy}\)

d, \(\dfrac{1}{1-x}\) +\(\dfrac{1}{1+x}\) + \(\dfrac{2}{1+x^2}\) + \(\dfrac{4}{1+x^4}\) + \(\dfrac{8}{1+x^8}\)+ \(\dfrac{16}{1+x^{16}}\)

1
13 tháng 11 2017

Bài 2 .

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) Sai đề hay sao ý

c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)

\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)

\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)

d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

.....

\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{32}{1-x^{32}}\)

12 tháng 8 2016

b) \(\left(2x-3\right)\left(x-1\right)=2x^2\)

<=> \(2x^2-5x+3=2x^2\)

<=> x=3/5

c) \(\left(\frac{1}{2}x+3\right)\left(\frac{2}{3}-x\right)=\frac{x^2}{2}+1\)

<=> \(\frac{1}{3x}-\frac{1}{2}x^2+2-3x=\frac{x^2}{2}+1\)

<=> \(x^2+\frac{8}{3}x-1=0\)

<=> \(\left[\begin{array}{nghiempt}x=-3\\x=\frac{1}{3}\end{array}\right.\)

12 tháng 8 2016

Tìm x: a, (x-1)(x+1)-2x=0

<=> \(x^2-1-2x=0\)

<=> \(x=1\pm\sqrt{2}\)

KL: có 2 nghiệm ...
           b, (2x-3)(x-1)=2x2

<=> \(2x^2-5x+3=2x^2\)

<=> \(x=\frac{3}{5}\)

            c) \(\left(\frac{1}{2}x+3\right)\left(\frac{2}{3}-x\right)=\frac{x^2}{2}+1\)

<=> \(\frac{1}{3}x-\frac{1}{2}x^2+2-3x=\frac{x^2}{2}+1\)

<=> \(x^2+\frac{8}{3}x-1=0\)

<=> \(\left[\begin{array}{nghiempt}x=-3\\x=\frac{1}{3}\end{array}\right.\)

KL: có 2 nghiệm ..
       

b: \(x^2\left(x-2x^3\right)=x^3-2x^5\)

b: \(\left(x^2+1\right)\left(5-x\right)\)

\(=5x^2-x^3+5-x\)

c: \(\left(x-2\right)\left(x^2+3x-4\right)\)

\(=x^3+3x^2-4x-2x^2-6x+8\)

\(=x^3+x^2-10x+8\)

d: \(\left(x-2y\right)^2=x^2-4xy+4y^2\)

3 tháng 9 2020

Bài này chỉ cần phá ngoặc là xong 

3 tháng 9 2020

a, PT <=> \(-x^3-4x+8=15\)

\(x^3+4x+7=0\)( vô nghiệm )

b, PT <=> \(24x+25=49\)

\(x=1\)

23 tháng 4 2020

a, \(\frac{x-1}{x+2}+1=\frac{1}{x-2}\)

ĐKXĐ: x + 2 \(\ne\) 0 và x - 2 \(\ne\) 0

\(\Rightarrow\) x \(\ne\) \(\pm\) 2

b, \(\frac{x-1}{1-2x}=1\)

ĐKXĐ: 1 - 2x \(\ne\) 0

\(\Leftrightarrow\) x \(\ne\) \(\frac{1}{2}\)

Bài 2:

a, \(\frac{x+2}{x}=\frac{2x+3}{x-2}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 2)

\(\Leftrightarrow\) \(\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x\left(2x+3\right)}{x\left(x-2\right)}\)

\(\Rightarrow\) (x + 2)(x - 2) = x(2x + 3)

\(\Leftrightarrow\) x2 - 4 = 2x2 + 3x

\(\Leftrightarrow\) x2 - 2x2 - 3x = 4

\(\Leftrightarrow\) -x2 - 3x = 4

\(\Leftrightarrow\) -x2 - 3x - 4 = 0

\(\Leftrightarrow\) -(x2 + 3x + 4) = 0

\(\Leftrightarrow\) x2 + 3x + 4 = 0

\(\Leftrightarrow\) x2 + 3x + \(\frac{9}{4}\) + \(\frac{7}{4}\) = 0

\(\Leftrightarrow\) (x + \(\frac{3}{2}\))2 + \(\frac{7}{4}\) = 0

Vì (x + \(\frac{3}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

b, \(\frac{2x+5}{2x}-\frac{x}{x+5}=0\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) -5)

\(\Leftrightarrow\) \(\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{2x^2}{2x\left(x+5\right)}=0\)

\(\Rightarrow\) (2x + 5)(x + 5) - 2x2 = 0

\(\Leftrightarrow\) 2x2 + 10x + 5x + 25 - 2x2 = 0

\(\Leftrightarrow\) 15x + 25 = 0

\(\Leftrightarrow\) x = \(\frac{-5}{3}\) (TMĐKXĐ)

Vậy S = {\(\frac{-5}{3}\)}

c, \(\frac{x+1}{3-x}=2\)

\(\Leftrightarrow\) \(\frac{x+1}{3-x}=\frac{2\left(3-x\right)}{3-x}\) (ĐKXĐ: x \(\ne\) 3)

\(\Rightarrow\) x + 1 = 2(3 - x)

\(\Leftrightarrow\) x + 1 - 2(3 - x) = 0

\(\Leftrightarrow\) x + 1 - 6 + 2x = 0

\(\Leftrightarrow\) 3x - 5 = 0

\(\Leftrightarrow\) x = \(\frac{5}{3}\) (TMĐKXĐ)

Vậy S = {\(\frac{5}{3}\)}

d, \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)

\(\Leftrightarrow\) \(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow\) (x + 1)2 - (x - 1)2 = 16

\(\Leftrightarrow\) (x + 1 - x + 1)(x + 1 + x - 1) = 16

\(\Leftrightarrow\) 4x = 16

\(\Leftrightarrow\) x = 4 (TMĐKXĐ)

Vậy S = {4}

Chúc bn học tốt!!

23 tháng 4 2020

kcj haha