Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giúp e vs các a cj soyeon_Tiểubàng giải
Phương An
Hoàng Lê Bảo Ngọc
Nguyễn Huy Tú
Silver bullet
Nguyễn Như Nam
Nguyễn Trần Thành Đạt
Nguyễn Huy Thắng
Võ Đông Anh Tuấn
Bài 2 .
a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)
\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{2x^2y-2xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
\(=\dfrac{3x^2y+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)
b) Sai đề hay sao ý
c) \(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(=\dfrac{2x+y}{x\left(2x-y\right)}+\dfrac{-16x}{\left(2x-y\right)\left(2x+y\right)}+\dfrac{2x-y}{x\left(2x+y\right)}\)
\(=\dfrac{\left(2x+y\right)^2-16x^2+\left(2x-y\right)^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{4x^2+4xy+y^2-16x^2+4x^2-4xy+y^2}{x\left(2x-y\right)\left(2x+y\right)}\)
\(=\dfrac{-8x^2}{x\left(2x-y\right)\left(2x+y\right)}\)
d) \(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
.....
\(=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{32}{1-x^{32}}\)
b) \(\left(2x-3\right)\left(x-1\right)=2x^2\)
<=> \(2x^2-5x+3=2x^2\)
<=> x=3/5
c) \(\left(\frac{1}{2}x+3\right)\left(\frac{2}{3}-x\right)=\frac{x^2}{2}+1\)
<=> \(\frac{1}{3x}-\frac{1}{2}x^2+2-3x=\frac{x^2}{2}+1\)
<=> \(x^2+\frac{8}{3}x-1=0\)
<=> \(\left[\begin{array}{nghiempt}x=-3\\x=\frac{1}{3}\end{array}\right.\)
Tìm x: a, (x-1)(x+1)-2x=0
<=> \(x^2-1-2x=0\)
<=> \(x=1\pm\sqrt{2}\)
KL: có 2 nghiệm ...
b, (2x-3)(x-1)=2x2
<=> \(2x^2-5x+3=2x^2\)
<=> \(x=\frac{3}{5}\)
c) \(\left(\frac{1}{2}x+3\right)\left(\frac{2}{3}-x\right)=\frac{x^2}{2}+1\)
<=> \(\frac{1}{3}x-\frac{1}{2}x^2+2-3x=\frac{x^2}{2}+1\)
<=> \(x^2+\frac{8}{3}x-1=0\)
<=> \(\left[\begin{array}{nghiempt}x=-3\\x=\frac{1}{3}\end{array}\right.\)
KL: có 2 nghiệm ..
b: \(x^2\left(x-2x^3\right)=x^3-2x^5\)
b: \(\left(x^2+1\right)\left(5-x\right)\)
\(=5x^2-x^3+5-x\)
c: \(\left(x-2\right)\left(x^2+3x-4\right)\)
\(=x^3+3x^2-4x-2x^2-6x+8\)
\(=x^3+x^2-10x+8\)
d: \(\left(x-2y\right)^2=x^2-4xy+4y^2\)
a, \(\frac{x-1}{x+2}+1=\frac{1}{x-2}\)
ĐKXĐ: x + 2 \(\ne\) 0 và x - 2 \(\ne\) 0
\(\Rightarrow\) x \(\ne\) \(\pm\) 2
b, \(\frac{x-1}{1-2x}=1\)
ĐKXĐ: 1 - 2x \(\ne\) 0
\(\Leftrightarrow\) x \(\ne\) \(\frac{1}{2}\)
Bài 2:
a, \(\frac{x+2}{x}=\frac{2x+3}{x-2}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 2)
\(\Leftrightarrow\) \(\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}=\frac{x\left(2x+3\right)}{x\left(x-2\right)}\)
\(\Rightarrow\) (x + 2)(x - 2) = x(2x + 3)
\(\Leftrightarrow\) x2 - 4 = 2x2 + 3x
\(\Leftrightarrow\) x2 - 2x2 - 3x = 4
\(\Leftrightarrow\) -x2 - 3x = 4
\(\Leftrightarrow\) -x2 - 3x - 4 = 0
\(\Leftrightarrow\) -(x2 + 3x + 4) = 0
\(\Leftrightarrow\) x2 + 3x + 4 = 0
\(\Leftrightarrow\) x2 + 3x + \(\frac{9}{4}\) + \(\frac{7}{4}\) = 0
\(\Leftrightarrow\) (x + \(\frac{3}{2}\))2 + \(\frac{7}{4}\) = 0
Vì (x + \(\frac{3}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
b, \(\frac{2x+5}{2x}-\frac{x}{x+5}=0\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) -5)
\(\Leftrightarrow\) \(\frac{\left(2x+5\right)\left(x+5\right)}{2x\left(x+5\right)}-\frac{2x^2}{2x\left(x+5\right)}=0\)
\(\Rightarrow\) (2x + 5)(x + 5) - 2x2 = 0
\(\Leftrightarrow\) 2x2 + 10x + 5x + 25 - 2x2 = 0
\(\Leftrightarrow\) 15x + 25 = 0
\(\Leftrightarrow\) x = \(\frac{-5}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{-5}{3}\)}
c, \(\frac{x+1}{3-x}=2\)
\(\Leftrightarrow\) \(\frac{x+1}{3-x}=\frac{2\left(3-x\right)}{3-x}\) (ĐKXĐ: x \(\ne\) 3)
\(\Rightarrow\) x + 1 = 2(3 - x)
\(\Leftrightarrow\) x + 1 - 2(3 - x) = 0
\(\Leftrightarrow\) x + 1 - 6 + 2x = 0
\(\Leftrightarrow\) 3x - 5 = 0
\(\Leftrightarrow\) x = \(\frac{5}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{5}{3}\)}
d, \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)
\(\Leftrightarrow\) \(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{\left(x-1\right)\left(x+1\right)}\)
\(\Rightarrow\) (x + 1)2 - (x - 1)2 = 16
\(\Leftrightarrow\) (x + 1 - x + 1)(x + 1 + x - 1) = 16
\(\Leftrightarrow\) 4x = 16
\(\Leftrightarrow\) x = 4 (TMĐKXĐ)
Vậy S = {4}
Chúc bn học tốt!!
\(x^2-x^2-2x-1-2=0\)
\(-2x-3=0\Leftrightarrow x=\dfrac{-2}{3}\)
\(\left(x-2x+1\right)\left(x+2x-1\right)=0\)
\(\left[{}\begin{matrix}-x+1=0\\3x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
a)\(x^2-x\left(x+2\right)-1=2\\ \Rightarrow x^2-x^2-2x-1=2\\ \Rightarrow-2x=3\\ \Rightarrow x=-\dfrac{3}{2}\)
b) \(x^2=\left(2x-1\right)^2\\ \Rightarrow\left[{}\begin{matrix}x=2x-1\\x=1-2x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)