Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{5}{4}\cdot\dfrac{11}{3}\cdot\dfrac{-1}{11}=\dfrac{-5}{12}=\dfrac{-25}{60}=\dfrac{-50}{120}\)
b: \(B=\dfrac{3}{4}\cdot\dfrac{1}{12}\cdot\dfrac{2}{3}=\dfrac{1}{24}=\dfrac{5}{120}\)
c: \(C=\dfrac{5}{4}\cdot\dfrac{1}{15}\cdot\dfrac{2}{5}=\dfrac{2}{60}=\dfrac{1}{30}=\dfrac{4}{120}\)
\(D=-3\cdot\dfrac{-7}{12}\cdot\dfrac{1}{-7}=-\dfrac{1}{4}=\dfrac{-30}{120}\)
Vì -50<-30<4<5
nên A<D<B<C
a: \(A=\dfrac{5}{4}\cdot\dfrac{11}{3}\cdot\dfrac{-1}{11}=\dfrac{-5}{12}=\dfrac{-25}{60}=\dfrac{-50}{120}\)
b: \(B=\dfrac{3}{4}\cdot\dfrac{1}{12}\cdot\dfrac{2}{3}=\dfrac{1}{24}=\dfrac{5}{120}\)
c: \(C=\dfrac{5}{4}\cdot\dfrac{1}{15}\cdot\dfrac{2}{5}=\dfrac{2}{60}=\dfrac{1}{30}=\dfrac{4}{120}\)
\(D=-3\cdot\dfrac{-7}{12}\cdot\dfrac{1}{-7}=-\dfrac{1}{4}=\dfrac{-30}{120}\)
Vì -50<-30<4<5
nên A<D<B<C
a, ( 44 - x ) / 3 = ( x - 12 ) / 5
=> 5 ( 44 - x ) = 3 ( x - 12 )
220 - 5x = 3x - 36
- 5x - 3x = - 36 - 220
- 8 x = - 256
x = 32
b , ( 3 - x ) / 4 = ( 2x + 7 ) / 5
=> 5 ( 3 - x ) = 4 ( 2x + 7 )
15 - 5x = 8 x + 28
- 5 x - 8 x = 28 - 15
- 13 x = 13
x = -1
a, \(\frac{\left(44-x\right)}{3}=\frac{\left(x-12\right)}{5}\)
=> (44 - x) . 5 = (x - 12) . 3
=> 44 - x . 5 = x - 12 .3
=> 44 - x . 5 = x - 36
=> x5 + x = - 36 - 44
=> x5 + x = - 80
=> x . (5 + 1) = - 80
=> x . 6 = - 80
=> x = - 80 : 6
=> x = - 13,3
b, \(\frac{\left(3-x\right)}{4}=\frac{\left(2x+7\right)}{5}\)
=> (3 - x) . 5 = (2x + 7) . 4
=> 3 - x . 5 = 2x + 7 . 4
=> 3 - x . 5 = 2x + 28
=> -x . 5 + 2x = 28 - 3
=> -x . 5 + 2x = 25
=> x . 5 + 2x = 25
=> x . (5 + 2) = 25
=> x . 7 = 25
=> x = 25 : 7
=> x = 3,57
Ta có :\(\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right).\left(2x-2\right)=\left(-\frac{3}{4}+\frac{5}{22}+\frac{3}{26}\right)\)
=> \(\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right).\left(2x-2\right)=-\frac{1}{2}\left(\frac{3}{2}-\frac{5}{11}-\frac{3}{13}\right)\)
=> \(2x-2=-\frac{1}{2}\)
=> \(2x=\frac{3}{2}\)
=> \(x=\frac{3}{4}\)
\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
<=> \(\frac{x-2}{7}.\frac{x+3}{5}.\frac{x+4}{3}=0\)
<=> \(\frac{x-2}{7}=0\)hoặc \(\frac{x+3}{5}=0\); \(\frac{x+4}{3}=0\)
Nếu \(\frac{x-2}{7}=0\)<=> \(x-2=0\)<=> \(x=2\)
Nếu \(\frac{x+3}{5}=0\)<=> \(x+3=0\) <=> \(x=3\)
Nếu \(\frac{x+4}{3}=0\)<=> \(x+4=0\)<=> \(x=4\)
Vây x= 2 hoặc 3; 4
a: \(x\in\left\{18;-18\right\}\)
\(a,\Rightarrow\left[{}\begin{matrix}x=18\\x=-18\end{matrix}\right.\\ b,\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\\ c,\Rightarrow x:\left(-\dfrac{1}{60}\right)=2\Rightarrow-60.x=2\Rightarrow x=-\dfrac{2}{60}=-\dfrac{1}{30}\)