Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: |x+3| \(\ge\)0; |2x+y-4| \(\ge\)0
\(\Rightarrow\) |x + 3| + |2x + y - 4| \(\ge\) 0
Dấu = xảy ra khi x+3=0 và 2x+y-4 = 0 \(\Rightarrow\)x=-3; y=10
1) |x + 3| + |2x + y - 4| = 0
\(\Leftrightarrow\hept{\begin{cases}x+3=0\\2x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-6+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=10\end{cases}}\)
\(\left|x\right|=2\frac{1}{3}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)
\(\left|x\right|=-3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
\(\left|x-1.7\right|=2.3\Rightarrow\orbr{\begin{cases}x-1.7=2.3\\x-1.7=-2.3\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\-\frac{3}{5}\end{cases}}}\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\-\frac{5}{4}\end{cases}}}\)
a) \(\left|x\right|=2\frac{1}{3}\)
\(\left|x\right|=\frac{7}{3}\)
\(\Rightarrow x=\frac{7}{3}\) hoặc \(x=-\frac{7}{3}\)
b) \(\left|x\right|=-3\)
\(\Rightarrow\) Không có giá trị x nào thỏa mãn đề bài
c) \(\left|x\right|=-3,15\)
\(\Rightarrow\) Không có giá trị x nào thỏa mãn đề bài
d) \(\left|x-1,7\right|=2,3\)
\(\Rightarrow x-1,7=2,3\) hoặc \(x-1,7=-2,3\)
Với \(x-1,7=2,3\)
\(x=2,3+1,7=4\)
Với \(x-1,7=-2,3\)
\(x=-2,3+1,7=-0,6\)
Vậy \(x\in\left\{4;-0,6\right\}\)
e) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\left|x+\frac{3}{4}\right|=0+\frac{1}{2}\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Rightarrow x+\frac{3}{4}=\frac{1}{2}\) hoặc \(x+\frac{3}{4}=-\frac{1}{2}\)
Với \(x+\frac{3}{4}=\frac{1}{2}\)
\(x=\frac{1}{2}-\frac{3}{4}=\frac{2}{4}-\frac{3}{4}=\frac{-1}{4}\)
Với \(x+\frac{3}{4}=-\frac{1}{2}\)
\(x=-\frac{1}{2}-\frac{3}{4}=-\frac{2}{4}-\frac{3}{4}=-\frac{5}{4}\)
Vậy \(x\in\left\{-\frac{1}{4};-\frac{5}{4}\right\}\)
a, Vì lxl = 2\(\frac{1}{3}\)\(\Rightarrow\) \(\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)\(\Rightarrow\)Vậy ...
b, Vì lxl \(\ge\) 0 mà lxl = -3 => ko tìm đc x
c, lập luận tg tự phần b
d, Vì lx-1.7l =2.3 \(\Rightarrow\)\(\orbr{\begin{cases}x-1,7=2,3\\x-1,7--2,3\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=2,3+1,7\\x=-2,3+1,7\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=4\\x=-0,6\end{cases}}\)Kết luận
e, Vì lx+3/4l -1/2 = 0 => lx+3/4l = 1/2 \(\Rightarrow\)\(\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}-\frac{3}{4}\\x=-\frac{1}{2}-\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}}\)
Kết luận
a, x=-2 1/3 hoặc x=2 1/3
b, không tồn tại x vì /x/>=0
c, tương tự b
d,x-1,7=2,3 hoặc x-1,7=-2,3 pn tự lm tiếp ha
e,x+3/4=1/2 hoặc x+3/4=-1/2
a, 1 - 2x < 7
=> -2x < 6
=> x < -3
=> x thuộc {-4; -5; -6; ...}
b, \(\left(x-1\right)\left(x-2\right)>0\)
th1 :
\(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}\Rightarrow}x< 1\Rightarrow x\in\left\{0;-1;-2;...\right\}}\)
th2 :
\(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>2\end{cases}\Rightarrow}x>2\Rightarrow x\in\left\{3;4;5;...\right\}}\)
vậy_
c tương tự b
\(a.1-2x< 7\Leftrightarrow2x< 7+1=8\Leftrightarrow x< 8:2\Leftrightarrow x< 4\)
Vậy x < 4
\(b.\left(x-1\right)\left(x-2\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1>0;x-2>0\\x-1< 0;x-2< 0\end{cases}}\)
\(TH1\Leftrightarrow\orbr{\begin{cases}x-1>0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0+1=1\\x>0+2=2\end{cases}\Rightarrow x>2}}\)
\(TH2\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0+1=1\\x< 0+2=2\end{cases}\Rightarrow}}x< 2\)
Vậy \(x\ne2\)