K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

\(a,ĐK:x\ge0\\ BPT\Leftrightarrow x< 2\Leftrightarrow0\le x< 2\\ b,ĐK:x\ge0\\ BPT\Leftrightarrow2x< 4\Leftrightarrow x< 2\Leftrightarrow0\le x< 2\)

7 tháng 10 2021

mk sửa lại đề chút:b) căn 2x<4

 

13 tháng 8 2016

Đặt \(A=\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\)

Điều kiện xác định : \(\begin{cases}x\ge\frac{3}{2}\\y\ge2\\z\ge\frac{1}{3}\end{cases}\)

Ta có : \(A=\left(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}-2\right)+\left(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}-4\right)+\left(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}-8\right)+14\)

\(=\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}+\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}+\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}+14\)

\(=\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}+14\ge14\)

Dấu "=" xảy ra khi \(\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}\) (TMĐK)

Vậy Min A = 14 <=> (x;y;z) = (2;6;\(\frac{17}{3}\))

14 tháng 8 2016

mình vô cùng cảm ơn bạn

 

\(\Leftrightarrow\sqrt{x+3}-2-2\sqrt{x}+2=\sqrt{2x+2}-2+2-\sqrt{3x+1}\)

=>\(\dfrac{x+3-4}{\sqrt{x+3}+2}-2\left(\sqrt{x}-1\right)=\dfrac{2x+2-4}{\sqrt{2x+2}+2}+\dfrac{4-3x-1}{2+\sqrt{3x+1}}\)

=>\(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x+3}+2}-2\left(\sqrt{x}-1\right)=\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{2x+2}+2}-\dfrac{3\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2+\sqrt{3x+1}}\)

=>\(\left(\sqrt{x}-1\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x+3}+2}-2-\dfrac{2\sqrt{x}+2}{\sqrt{2x+2}+2}+\dfrac{3\sqrt{x}+3}{2+\sqrt{3x+1}}\right)=0\)

=>căn x-1=0

=>x=1

10 tháng 8 2023

loading...  

11 tháng 6 2019

1.undefined

19 tháng 10 2020

\(\sqrt{x} = \sqrt{2012} - \sqrt{y} \Rightarrow x = 2012 -2\sqrt{y} +y \\ \Rightarrow \)  

y là số chính phương. Ta thử y =0,1,4,.... rồi tìm x

3 tháng 7 2015

\(\sqrt{x}+\sqrt{x-5}\le\sqrt{5}\)

<=>x+x-5+\(2\sqrt{x^2-5}\le5\)

<=>\(2\sqrt{x^2-5x}\le10-2x\)

<=>4(x2-5x)<100-40x+4x2(bình 2 vế)

<=>4x2-20x+40x-4x2<100

<=>20x<100

<=>x<5