Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `(x-8)(x^3+8)=0`
`<=>(x-8)(x+2)(x^2-2x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=8\\x=-2\end{array} \right.\) (Vì `x^2-2x+4 \ne 0 forall x)`
Vậy `A={8;-2}`.
b) `(4x-3)-(x+5)=3(10-x)`
`,=>4x-3-x-5=30-3x`
`<=>3x-8=30-3x`
`<=>6x=38`
`<=>x=19/3`
Vậy `S={19/3}`.
Bài 2:
a: \(\left(3x-3\right)^2-\left(5x-3\right)^2=0\)
\(\Leftrightarrow\left(3x-3-5x+3\right)\left(3x-3+5x-3\right)=0\)
\(\Leftrightarrow-2x\left(8x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{4}\end{matrix}\right.\)
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2
\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)
\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)
\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)
\(a\text{) }\left|2x-5\right|+\left|3y+1\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x-5\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+1=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(\left|3x-4\right|+\left|3y-5\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y-5\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y-5=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=4\\3y=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)
c) \(\left|2x-5\right|+\left|xy-3y+2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x-5\right|=0\\\left|xy-3y+2\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\xy-3y+2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=5\\xy-3y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\xy-3y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\\dfrac{5}{2}y-3y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\\left(\dfrac{5}{2}-3\right)y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\\left(-\dfrac{1}{2}\right)y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=\dfrac{5}{2}\\\left(-\dfrac{1}{2}\right)y=-2\end{matrix}\right.\)
nhanh cho mot k