Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^x-27.3^5.3^2=0\)
\(3^x-3^3.3^5.3^3=0\)
\(3^x=3^{13}\)
\(x=13\)
b) \(\left(-5+3x\right):4=16\)
\(-5+3x=64\)
\(3x=69\)
\(x=23\)
a: =>4/3x=7/9-4/9=1/3
=>x=1/4
b: =>5/2-x=9/14:(-4/7)=-9/8
=>x=5/2+9/8=29/8
c: =>3x+3/4=8/3
=>3x=23/12
hay x=23/36
d: =>-5/6-x=7/12-4/12=3/12=1/4
=>x=-5/6-1/4=-10/12-3/12=-13/12
a) (x - 140) : 7 = 33 - 23 . 3
(x - 140) : 7 = 27 - 8 . 3 = 27 - 24 = 3
x - 140 = 3 x 7 = 21
x = 21 + 140 = 161
b) x3 . x2 = 28 : 23
x5 = 25
=> x = 2
c) (x + 2) . ( x - 4) = 0
x = -2 hoặc 4
d) 3x-3 - 32 = 2 . 32 =
3x-3 - 9 = 2 . 9 = 18
3x-3 = 18 + 9 = 27
3x-3 = 33
=> x - 3 = 3
x = 3 + 3 = 6
x2+5.x=0
x.x+5.x=0
x.(x+5)=0
*x=0
*x+5=0
x=0-5
x=-5
Vậy x=0 hoặc x=-5
1) Ta có: \(\dfrac{3x+7}{11}=\dfrac{5x-7}{9}\)
\(\Leftrightarrow9\left(3x+7\right)=11\left(5x-7\right)\)
\(\Leftrightarrow27x+63=55x-77\)
\(\Leftrightarrow27x-55x=-77-63\)
\(\Leftrightarrow-28x=-140\)
hay x=5
Vậy: S={5}
\(A=3x-x^2\)
\(=-\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=-\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=\frac{9}{4}-\left(x-\frac{3}{2}\right)^2\ge\frac{9}{4}\)
Min A = \(\frac{9}{4}\)khi \(x-\frac{3}{2}=0=>x=\frac{3}{2}\)
\(B=25+2x-x^2\)
\(=-\left(x^2-2x+1-26\right)\)
\(=-\left(\left(x-1\right)^2-26\right)\)
\(=26-\left(x-1\right)^2\ge26\)
Min A = 26 khi \(x-1=0=>x=1\)
\(C=x^2-5x+19\)
\(=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{51}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\)
Min C = \(\frac{51}{4}\)khi \(x+\frac{5}{2}=0=>x=\frac{-5}{2}\)
@@@ nha các bạn . Thanks
\(a,-4\left(2x+9\right)=\left(-8x+3\right)\)
\(\Rightarrow-8x-36=-8x+3\)
\(\Rightarrow-8x+8x=3+36\)
\(\Rightarrow0x=39\left(vô-lí\right)\)
\(b,1+x-2\left(5+3x\right)=4-5x\)
\(\Rightarrow1+x-10-6x=4-5x\)
\(\Rightarrow x-6x+5x=4+10-1\)
\(\Rightarrow0x=13\left(vô-lí\right)\)
\(c,3\left(2-x\right)+1=-3x+7\)
\(\Rightarrow6-3x+1=-3x+7\)
\(\Rightarrow-3x+3x=7-1-6\)
\(\Rightarrow0x=0\Rightarrow x=0\)
a) nếu \(5x-3\ge0\)hay \(x\ge\frac{3}{5}\) ta có \(\left|5x-3\right|=5x-3\)
nếu \(5x-3< 0\) hay \(x< \frac{3}{5}\) ta có \(\left|5x-3\right|=3-5x\)
với \(x\ge\frac{3}{5}\) ta có
\(\left|5x-3\right|=x+7\) \(< =>5x-3=x+7\)
\(< =>5x-x=7+3\)
\(< =>4x=10\)
\(< =>x=\frac{10}{4}=\frac{5}{2}\) (thoả mãn khoảng xét: \(\frac{5}{2}>\frac{3}{5}\))
với \(x< \frac{3}{5}\)ta được
\(\left|5x-3\right|=x+7\) \(< =>3-5x=x+7\)
\(< =>-5x-x=7-3\)
\(< =>-6x=4\)
\(< =>x=-\frac{4}{6}=-\frac{2}{3}\) (thoả mãn khoảng xét : \(-\frac{2}{3}< \frac{3}{5}\))
b) bạn lập bảng xét dấu rồi xét từng trường hợp là được
\(\left(b\right)3^2+3^4+3^x=3^{10}\)
\(\Rightarrow3^{2+4+x}=3^{10}\Rightarrow2+4+x=10\)
\(\Rightarrow6+x=10\Rightarrow x=10-6=4\)
\(\left(e\right)x.x^2.x^3.x^4=1024\)
\(\Rightarrow x^1.x^2.x^3.x^4=1024\Rightarrow x^{10}=1024\)
Mà \(1024=2^{10}\Rightarrow x=2\)
a,1+2+3+4...+x=45
có số hạng là (x-1)+1
suy ra:x.(x+1):2=45
x.(x+1)=90
x.(x+1)=9.10
suy ra:x=9
Vậy x=9