Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0
1) x - 3 = 0 ⇔ x = 3
2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5
Vậy tập nghiệm của phương trình là S = {3;-2,5}
b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0
⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0
1) x - 2 = 0 ⇔ x = 2
2) -x + 5 = 0 ⇔ x = 5
Vậy tập nghiệm của phương trình là S = {2;5}
c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.
Vậy tập nghiệm của phương trình là x = 1
d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0
⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0
1) x - 2 = 0 ⇔ x = 2
2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72
Vậy tập nghiệm của phương trình là S = {2;72}
e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0
⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0
1) x - 7 = 0 ⇔ x = 7
2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1
Vậy tập nghiệm phương trình là: S= { 7; 1}
f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0
⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0
⇔ x = 3 hoặc x = 1
Vậy tập nghiệm của phương trình là S = {1;3}
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
a)
pt <=> \(x^2+4x+4+x^2-6x+9=2x^2+14x\)
<=> \(2x^2-2x+13=2x^2+14x\)
<=> \(16x=13\)
<=> \(x=\frac{13}{16}\)
b)
pt <=> \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)
<=> \(2x^3+6x=2x^3\)
<=> \(6x=0\)
<=> \(x=0\)
c)
pt <=> \(\left(x^3-3x^2+3x-1\right)-125=0\)
<=> \(\left(x-1\right)^3=125\)
<=> \(x-1=5\)
<=> \(x=6\)
d)
pt <=> \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
<=> \(\left(x-1\right)^2+\left(y+2\right)^2=0\) (1)
CÓ: \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)
=> \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DÁU "=" XẢY RA <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e)
pt <=> \(2x^2+8x+8+y^2-2y+1=0\)
<=> \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)
TA LUÔN CÓ: \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
=> DẤU "=" XẢY RA <=> \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )
<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x
<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9
<=> -16x = -13
<=> x = 13/16
b) ( x + 1 )3 + ( x - 1 )3 = 2x3
<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3
<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1
<=> 6x = 0
<=> x = 0
c) x3 - 3x2 + 3x - 126 = 0
<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0
<=> ( x - 1 )3 = 125
<=> ( x - 1 )3 = 53
<=> x - 1 = 5
<=> x = 6
d) x2 + y2 - 2x + 4y + 5 = 0
<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0
<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e) 2x2 + 8x + y2 - 2y + 9 = 0
<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0
<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)
\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a)4x2+8x+3=0
<=>(4x2+2x)+(6x+3)=0
<=>2x(2x+1)+3(2x+1)=0
<=>(2x+1)(2x+3)=0
<=>2x+1=0 hoặc 2x+3=0
<=>x=-1/2 hoặc x=-3/2
b)(2x+3)2=(x-6)2
<=>(2x+3)2-(x-6)2=0
<=>(2x-3-x+6)(2x+3+x-6)=0
<=>(x+3)(3x-3)=0
<=>x+3=0 hoặc 3x-3=0
<=>x=-3 hoặc x=1
c)x3-7x2+15x-9=0
<=>(x3-6x2+9x)-(x2-6x+9)=0
<=>x(x-3)2-(x-3)2=0
<=>(x-3)2(x-1)=0
<=>(x-3)2=0 hoặc x-1=0
<=>x=3 hoặc x=1
a)(2x-3)2=(x+5)2
=>4x2-12x+9=x2+10x+25
=>3x2-22x-16=0
=>3x2+2x-24x-16=0
=>x(3x+2)-8(3x+2)=0
=>(x-8)(3x+2)=0
=>x=8 hoặc x=-2/3
b)X2.(x-1)-4x2+8x-4=0
=>x2(x-1)-4x2+4x+4x-4=0
=>x2(x-1)-4x(x-1)-4(x-1)=0
=>x2(x-1)-(4x-4)(x-1)=0
=>(x2-4x+4)(x-1)=0
=>(x-2)2(x-1)=0
=>x=2 hoặc x=1
c) 4x2- 25 - (2x- 5) . ( 2x+7)=0
=>4x2-25-(4x2+14x-10x-35)=0
=>4x2-25-4x2-14x+10x+35=0
=>-4x+10=0
=>-4x=-10 <=>x=5/2
d) x3+27+(x+3).(x-9)=0
=>x3+33+(x+3)(x-9)=0
=>(x+3)(x2-3x+9)+(x+3)(x-9)=0
=>(x2-3x+9+x-9)(x+3)=0
=>(x2-2x)(x+3)=0
=>x(x-2)(x+3)=0
=>x=0 hoặc x=2 hoặc x=-3
e) (x-2).(x+5)- x2+4=0
=>(x-2)(x+5)-(x-2)(x+2)=0
=>(x-2)(x+5-x-2)=0
=>3(x-2)=0 <=>x=2
Sau khi khai triển hằng đẳng thức và thực hiện chuyển vế bạn sẽ đk kết quả như này!(\(\left(2x-3\right)^2=\left(x+5\right)^2=3x^2-22x-14\)
8x3 - 50x = 0
⇔ 2x( 4x2 - 25 ) = 0
⇔ 2x( 2x - 5 )( 2x + 5 ) = 0
⇔ 2x = 0 hoặc 2x - 5 = 0 hoặc 2x + 5 = 0
⇔ x = 0 hoặc x = ±5/2
( x + 3 )2 = 9( 2x - 1 )2
⇔ ( x + 3 )2 - 32( 2x - 1 )2 = 0
⇔ ( x + 3 )2 - [ 3( 2x - 1 ) ]2 = 0
⇔ ( x + 3 )2 - ( 6x - 3 )2 = 0
⇔ ( x + 3 - 6x + 3 )( x + 3 + 6x - 3 ) = 0
⇔ ( -5x + 6 ).7x = 0
⇔ -5x + 6 = 0 hoặc 7x = 0
⇔ x = 6/5 hoặc x = 0
\(8x^3-50x=0\)
\(2x\left(4x^2-25\right)=0\)
\(\orbr{\begin{cases}2x=0\\4x^2-25=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^2=\frac{25}{4}\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm\sqrt{\frac{25}{4}}\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm\frac{5}{2}\end{cases}}\)
\(\left(x+3\right)^2=9\left(2x-1\right)^2\)
\(x^2+6x+9=9\left(4x^2-4x+1\right)\)
\(x^2+6x+9=36x^2-36x+9\)
\(0=36x^2-36x+9-x^2-6x-9\)
\(0=35x^2-42x\)
\(35x^2-42x=0\)
\(7x\left(5x-6\right)=0\)
\(\orbr{\begin{cases}7x=0\\5x-6=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{6}{5}\end{cases}}\)