Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\left|\frac{3}{2}x-1\right|-2x=1\Rightarrow\left|\frac{3}{2}x-1\right|=1+2x\)
Vì \(\left|\frac{3}{2}x-1\right|\ge0\Leftrightarrow1+2x\ge0\Leftrightarrow x\ge\frac{-1}{2}\)
\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x-1=1+2x\\\frac{3}{2}x-1=-1-2x\end{cases}\Rightarrow\orbr{\begin{cases}\frac{3}{2}x-2x=1+1\\\frac{3}{2}x+2x=-1+1\end{cases}\Rightarrow}\orbr{\begin{cases}\frac{-1}{2}x=2\\\frac{7}{2}x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-4\left(ktm\right)\\x=0\left(tm\right)\end{cases}}}\)
Vậy x = 0
2,3 tương tự 1
4, Vì \(\left|x\left(x^2-\frac{5}{4}\right)\right|\ge0\Rightarrow x\ge0\)
Ta có: \(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\Rightarrow x\left(x^2-\frac{5}{4}\right)=\pm x\) (1)
- Nếu x = 0 thì 0 = 0 thỏa mãn (1)
- Nếu \(x\ne0\) thì \(\left(1\right)\Leftrightarrow\orbr{\begin{cases}x^2-\frac{5}{4}=1\\x^2-\frac{5}{4}=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{9}{4}\\x^2=\frac{1}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm\frac{3}{2}\\x=\pm\frac{1}{2}\end{cases}}}\)
Vì \(x\ge0\Rightarrow x\in\left\{0;\frac{1}{2};\frac{3}{2}\right\}\)
Vậy...
b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)
e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)
Vậy ....
|5x-3| - 3x = 7
*Nếu \(x\ge\frac{3}{5}\)
5x - 3 - 3x = 7
2x = 10
x = 5 ( tm)
*Nếu \(x< \frac{3}{5}\)
3 - 5x - 3x = 7
-8x = 4
x = \(-\frac{1}{2}\)( tm )
Làm hơi khó nhìn , thông cảm. Mệt rùi :)
|x - 3| + |x - 5| - 4x = -28
*Nếu x < 3
3 - x + 5 - x - 4x = -28
-6x = -36
x = 6 ( loại do ko tm khoảng đang xét )
* nếu 3 < x < 5
x - 3 + 5 - x - 4x = -28
-4x = -30
x= \(\frac{15}{2}\) ( loại do ko tm khaongr đang xét )
*Nếu x > 5
x - 3 + x - 5 - 4x = -28
-2x = -20
x = 10 ( tm)
Vậy x =10
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
#)Giải :
a) \(\left(5x+1\right)^2=\frac{36}{49}\Leftrightarrow\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\Leftrightarrow5x+1=\frac{6}{7}\Leftrightarrow5x=-\frac{1}{7}\Leftrightarrow x=-\frac{1}{35}\)
b) \(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\Leftrightarrow\left(x-\frac{2}{9}\right)^3=\left[\left(\frac{2}{3}\right)^2\right]^3\Leftrightarrow x-\frac{2}{9}=\left(\frac{2}{3}\right)^2=\frac{4}{9}\Leftrightarrow x=\frac{2}{3}\)
c) \(\left(8x-1\right)^{2x+1}=5^{2x+1}\Leftrightarrow8x-1=5\Leftrightarrow8x=6\Leftrightarrow x=\frac{6}{8}\)
a) \(\left(5x+1\right)^2=\frac{36}{49}\)
\(\left(5x+1\right)^2=\frac{6^2}{7^2}\)
\(\left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\)
\(\Leftrightarrow5x+1=\frac{6}{7}\)
\(5x=\frac{6}{7}-1\)
\(5x=\frac{6}{7}-\frac{7}{7}\)
\(5x=-\frac{1}{7}\)
\(x=-\frac{1}{7}\div5\)
\(x=-\frac{1}{7}\times\frac{1}{5}\)
\(x=-\frac{1}{35}\)
Vậy \(x=-\frac{1}{35}\)
a/ 2x - 10 - [3x - 14 - (4 - 5x) - 2x] = 2
=> 2x - 10 - (3x - 14 - 4 + 5x - 2x) = 2
=> 2x - 10 - 3x + 14 + 4 - 5x + 2x = 2
=> -4x + 6 = 0
=> -4x = -6
=> x = 3/2
b/ \(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
\(\Rightarrow\frac{1}{4}x-1+\frac{5}{6}x-2-\frac{3}{8}x-1-\frac{9}{2}=0\)
\(\Rightarrow\frac{17}{24}x-\frac{17}{2}=0\)
\(\Rightarrow\frac{17}{24}x=\frac{17}{2}\)
\(\Rightarrow x=12\)
\(5x\left(2x-\frac{1}{2}\right)+2\left(2x-\frac{1}{2}\right)=0\)
\(\Rightarrow\left(2x-\frac{1}{2}\right)\left(5x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{2}=0\\5x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{1}{2}\\5x=-2\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{4}\\x=\frac{-2}{5}\end{cases}}\)
5x.(2x - 1/2) + 2.(2x - 1/2) = 0
<=> 5x.2x + 5x.(-1/2) + 2.2x + 2.(-1/2) = 0
<=> 10x2 - 5/2x + 4x - 1 = 0
<=> 10x2 - 13/2x - 1 = 0
=> x = 1/4 hoặc x = -2/5