
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{1}{2}2^x+2^{x+2}=2^8+2^5\)
\(\Leftrightarrow2^{x-1}+2^{x+2}=2^5\left(1+2^3\right)\)
\(\Leftrightarrow2^{x+1}\left(1+2^3\right)=2^5\left(1+2^3\right)\)
\(\Leftrightarrow2^{x-1}=2^5\)
\(\Leftrightarrow x-1=5\)
\(\Leftrightarrow x=5+1=6\)
Vậy x=6
Bạn ơi,cho mk hỏi tại sao từ chỗ \(2^{x-1}+2^{x+2}\)bạn lại suy ra được \(2^{x+1}\left(1+2^3\right)\)vậy bạn?

Giải:
\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)
\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0
\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)
Vậy \(x\in\) {0; 25}
\(x^5\) = 2\(x^7\)
\(x^5\) - 2\(x^7\) = 0
\(x^5\).(1 - 2\(x^2\)) = 0
\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=\pm\sqrt{\frac12}\end{array}\right.\)
Vậy \(x\) ∈ {- \(\sqrt{\frac12}\); 0; \(\sqrt{\frac12}\)}

Giải:
\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)
\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0
\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)
Vậy \(x\in\) {0; 25}
\(x^5\) = 2\(x^7\)
\(x^5\) - 2\(x^7\) = 0
\(x^5\).(1 - 2\(x^2\)) = 0
\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=-\frac{1}{\sqrt2}\\ x=\frac{1}{\sqrt2}\end{array}\right.\)
Vậy \(x\) \(\in\) {- \(\frac{1}{\sqrt2}\); 0; \(\frac{1}{\sqrt2}\)}

a) 23x+2 = 4x+5 = (22)x+5 = 22x+10
=> 3x + 2 = 2x + 10
=> 3x - 2x = 10 - 2
x = 8
b) 3-1.3x + 9.3x = 28
3x. ( 3-1 + 9) = 28
3x. 28/3 = 28
3x = 3 = 31
=> x = 1
\(2^{3x+2}=4^{x+5}\)
\(\Rightarrow2^{3x+2}=\left(2^2\right)^{x+5}\)
\(\Rightarrow3x+2=2\left(x+5\right)\)
\(\Rightarrow3x+2=2x+10\)
\(\Rightarrow3x-2x=10-2\Rightarrow x=8\)
\(3^{-1}.3^x+9.3^x=28\)
\(\Rightarrow\frac{1}{3}.3^x+9.3^x=28\)
\(\Rightarrow3^x.\left(9+\frac{1}{3}\right)=28\)
\(\Rightarrow3^x.\frac{28}{3}=28\)
\(\Rightarrow3^x=3\Rightarrow x=1\)
Chúc bạn học tốt.

a)\(\frac{x+3}{x+5}=7\Leftrightarrow x+3=7\left(x+5\right)\)
\(\Leftrightarrow x+3=7x+35\)
\(\Leftrightarrow-6x=32\)
\(\Leftrightarrow x=-\frac{16}{3}\)
b)\(\frac{2x-1}{3x+5}=-\frac{2}{3}\)
\(\Leftrightarrow3\left(2x-1\right)=-2\left(3x+5\right)\)
\(\Leftrightarrow6x-3=-6x-10\)
\(\Leftrightarrow12x=-7\)
\(\Leftrightarrow x=-\frac{7}{12}\)
c)\(\frac{x+1}{4}=\frac{9}{x+1}\Leftrightarrow\left(x+1\right)^2=36\)
\(\Leftrightarrow\left(x+1\right)^2=6^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}}\)
d)\(\frac{6x-1}{2x+3}=\frac{3x}{x+2}\)
\(\Leftrightarrow\left(6x-1\right)\left(x+2\right)=3x\left(2x+3\right)\)
\(\Leftrightarrow6x^2+12x-x-2=6x^2+9x\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\)
\(5^{x+2}+5^{x+1}+5^x=3785.\)
\(\Leftrightarrow5^x\cdot5^2+5^x\cdot5+5^x=3785.\)
\(\Leftrightarrow5^x\left(5^2+5+1\right)=3785\)
\(\Leftrightarrow5^x\left(25+5+1\right)=3785\)
\(\Leftrightarrow5^x31=3785\)
\(\Leftrightarrow5^x=\frac{3785}{31}=125\)
\(\Leftrightarrow5^x=5^3\)
\(\Leftrightarrow x=3\)
vậy x\(=3\)
5x+2+5x+1+5x=3785
=> 5x.52+5x.5+5x=3785
=>31.5x=3875
=> 5x=125
=> 5x=53
=> x=3
Vậy x=3