K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

584528585535048509893235* x = 258350258205205017582542085720543

x = 258350258205205017582542085720543 : 584528585535048509893235

x =  441980537.134

26 tháng 11 2019

Phương pháp:

Sử dụng tính chất của tích phân: 

 

Cách giải:

Chọn: B

 

 

 

30 tháng 1 2016

c1; sin2x=1-cos2x/2 roi tung phan

30 tháng 1 2016

c2 ;nhan vo duocx2(sinx/2 .cosx/2)=x2/2(sinx+cosx) lai nhan vo roi tung phan nhe

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

4 tháng 3 2019

\(a,1+x=2\)

\(\Leftrightarrow x=2-1\)

\(\Rightarrow x=1\)

\(Do\)\(x\ne1\Rightarrow x\in\varnothing\)

Vậy \(x\in\varnothing\)

\(b,1-1=x\)

\(\Leftrightarrow0=x\)

\(\Leftrightarrow x=0\)

\(Do\)\(x\ne0\Rightarrow x\in\varnothing\)

Vậy \(x\in\varnothing\)

Bạn ghi lại đề đi bạn

4 tháng 11 2023

bạn thấy chưa ạ mình mới cập nhật lại rồi á bạn

NV
27 tháng 6 2021

a.

\(\Leftrightarrow x^3+3x^2+x+1\ge mx\) ; \(\forall x\ge0\) (1)

- Với \(x=0\) thỏa mãn

- Với \(x>0\)

(1) \(\Leftrightarrow x^2+3x+1+\dfrac{1}{x}\ge m\)

\(\Leftrightarrow m\le\min\limits_{x>0}\left(x^2+3x+1+\dfrac{1}{x}\right)\)

Xét \(f\left(x\right)=x^2+3x+1+\dfrac{1}{x}\) với \(x>0\)

\(f'\left(x\right)=2x+3-\dfrac{1}{x^2}=0\Leftrightarrow\dfrac{\left(2x-1\right)\left(x+1\right)^2}{x^2}=0\Rightarrow x=\dfrac{1}{2}\)

Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\dfrac{1}{2}\right)=\dfrac{19}{4}\)

\(\Rightarrow m\le\dfrac{19}{4}\)

NV
23 tháng 5 2021

a.

\(y'=x^2+2\left(m^2-1\right)x+2m-3\)

\(y''=2x+2\left(m^2-1\right)\)

Hàm đạt cực đại tại \(x=2\) khi: \(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4+4\left(m^2-1\right)+2m-3=0\\4+2\left(m^2-1\right)< 0\end{matrix}\right.\)

Do \(2m^2+2>0\) ;\(\forall m\) nên ko tồn tại m thỏa mãn yêu cầu đề bài

b.

\(y'=x^2+2mx+3\)

\(y''=2x+2m\)

Hàm đạt cực đại tại \(x=-3\) khi: \(\left\{{}\begin{matrix}9-6m+3=0\\-6+2m< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=2\\m< 3\end{matrix}\right.\)

\(\Rightarrow m=2\)