Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,8.6+288.\left(x+3\right)^2=50\\ \Leftrightarrow48+288\left(x+3\right)^2=50\\ \Leftrightarrow\left(x+3\right)^2=\dfrac{1}{144}\\ \Leftrightarrow x+3\in\left\{-\dfrac{1}{12};\dfrac{1}{12}\right\}\\ \Leftrightarrow x\in\left\{-\dfrac{37}{12};-\dfrac{35}{12}\right\}\\ Vậy.....\)
\(b,\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
=>Số lượng số hạng của tổng trên là (x+100-x-1):1+1=100(số hạng)
\(\Rightarrow\dfrac{\left(2x+101\right).100}{2}=5750\\ \Rightarrow2x+101=\dfrac{5750.2}{100}\\ \Rightarrow2x+101=115\\ \Rightarrow2x=14\\ \Rightarrow x=7\\ Vậy........\)
c: \(\left|\dfrac{7}{5}x+\dfrac{2}{3}\right|=\left|\dfrac{4}{3}x-\dfrac{1}{4}\right|\)
=>7/5x+2/3=4/3x-1/4 hoặc 7/5x+2/3=1/4-4/3x
=>1/15x=-11/12 hoặc 41/15x=-5/12
=>x=-55/4 hoặc x=-25/164
d: |7/8x+5/6|=|1/2x+5|
=>|42x+40|=|24x+240|
=>42x+40=24x+240 hoặc 42x+40=-24x-240
=>18x=200 hoặc 66x=-280
=>x=100/9 hoặc x=-140/33
Câu 1:
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)
\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)
\(A=0\)
Ta có:Số số hạng từ 2 đến 101 là:
(101-2):1+1=100(số hạng)
Do đó từ 2 đến 101 có số cặp là:
100:2=50(cặp)
\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)
\(B=\frac{5151}{51}\)
\(B=101\)
Câu 2:
a)697:\(\frac{15x+364}{x}\)=17
\(\frac{15x+364}{x}\)=697:17
\(\frac{15x+364}{x}\)=41
15x+364=41x
41x-15x=364
26x=364
x=14
Vậy x=14
b)92.4-27=\(\frac{x+350}{x}+315\)
\(\frac{x+350}{x}+315\)=341
\(\frac{x+350}{x}\)=26
x+350=26
x=26-350
x=-324
Vậy x=-324
c, 720 : [ 41 - ( 2x -5)] = 40
[ 41 - ( 2x -5)] =720:40
[ 41 - ( 2x -5)] =18
2x-5=41-18
2x-5=23
2x=28
x=14
Vậy x=14
d, Số số hạng từ 1 đến 100 là:
(100-1):1+1=100(số hạng)
Tổng dãy số là:
(100+1)x100:2=5050
Mà cứ 1 số hạng lại có 1x suy ra có 100x
Ta có:(x+1) + (x+2) +...+ (x+100) = 5750
(x+x+...+x)+(1+2+...+100)=5750
100x+5050=5750
100x=700
x=7
Vậy x=7
a) \(\left(3x-\frac{1}{2}\right)^2=\frac{1}{121}=\left(\frac{1}{11}\right)^2\)
=> \(\orbr{\begin{cases}3x-\frac{1}{2}=\frac{1}{11}\\3x-\frac{1}{2}=-\frac{1}{11}\end{cases}}\)
=> \(\orbr{\begin{cases}3x=\frac{13}{22}\\3x=\frac{9}{22}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{13}{66}\\x=\frac{3}{22}\end{cases}}\)
b) \(\left(5-3x\right)^3=\left(-\frac{1}{27}\right)=\left(-\frac{1}{3}\right)^3\)
=> \(5-3x=-\frac{1}{3}\)
=> \(3x=\frac{16}{3}\)
=> \(x=\frac{16}{3}:3=\frac{16}{9}\)
c) 5x + 5x+2 = 650
=> 5x + 5x . 52 = 650
=> 5x(1 + 52) = 650
=> 5x . 26 = 650
=> 5x = 25
=> 5x = 52 => x = 2
d) 3x-1 + 5.3x-1 = 126
=> (1 + 5).3x-1 = 126
=> 6.3x-1 = 126
=> 3x-1 = 21
=> 3x-1 =3.7
tới đây là không xử lí được x luôn :)
a,\(\left(3x-\frac{1}{2}\right)^2=\frac{1}{121}=\left(\frac{1}{11}\right)^2=\left(-\frac{1}{11}\right)^2\)
\(< =>\orbr{\begin{cases}3x-\frac{1}{2}=\frac{1}{11}\\3x-\frac{1}{2}=-\frac{1}{11}\end{cases}}< =>\orbr{\begin{cases}3x=\frac{1}{11}+\frac{1}{2}\\3x=-\frac{1}{11}+\frac{1}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}3x=\frac{2}{22}+\frac{11}{22}=\frac{13}{22}\\3x=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{13}{22}:3=\frac{13}{22}.\frac{1}{3}=\frac{13}{66}\\x=\frac{9}{22}:3=\frac{9}{22}.\frac{1}{3}=\frac{9}{66}=\frac{3}{22}\end{cases}}\)
b,\(\left(5-3x\right)^2=-\frac{1}{27}=\left(-\frac{1}{3}\right)^3\)
\(< =>5-3x=-\frac{1}{3}< =>-3x=-\frac{1}{3}-5=-\frac{16}{3}\)
\(< =>3x=\frac{16}{3}< =>x=\frac{16}{3}:3=\frac{16}{3}.\frac{1}{3}=\frac{16}{9}\)
c,\(5^x+5^{x+2}=650< =>5^x+5^x.25=650\)
\(< =>5^x\left(25+1\right)=5^x=\frac{650}{36}=25< =>x=2\)
bạn nào giúp câu d
a) \(\left(2x-3\right)\left(6-2x\right)=0\)
\(\circledast\)TH1: \(2x-3=0\\ 2x=0+3\\ 2x=3\\ x=\dfrac{3}{2}\)
\(\circledast\)TH2: \(6-2x=0\\ 2x=6-0\\ 2x=6\\ x=\dfrac{6}{2}=3\)
Vậy \(x\in\left\{\dfrac{3}{2};3\right\}\).
b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(\dfrac{1}{3}x=0-\dfrac{2}{5}\left(x-1\right)\)
\(\dfrac{1}{3}x=-\dfrac{2}{5}\left(x-1\right)\)
\(-\dfrac{2}{5}-\dfrac{1}{3}=-x\left(x-1\right)\)
\(-\dfrac{11}{15}=-x\left(x-1\right)\)
\(\Rightarrow x=1.491631652\)
Vậy \(x=1.491631652\)
c) \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(\circledast\)TH1: \(3x-1=0\\ 3x=0+1\\ 3x=1\\ x=\dfrac{1}{3}\)
\(\circledast\)TH2: \(-\dfrac{1}{2}x+5=0\\ -\dfrac{1}{2}x=0-5\\ -\dfrac{1}{2}x=-5\\ x=-5:-\dfrac{1}{2}\\ x=10\)
Vậy \(x\in\left\{\dfrac{1}{3};10\right\}\).
d) \(\dfrac{x}{5}=\dfrac{2}{3}\\ x=\dfrac{5\cdot2}{3}\\ x=\dfrac{10}{3}\)
Vậy \(x=\dfrac{10}{3}\).
e) \(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\\ \)
\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{1}{2}\)
\(\dfrac{x}{3}=\dfrac{7}{10}\)
\(x=\dfrac{3\cdot7}{10}\)
\(x=\dfrac{21}{10}\)
Vậy \(x=\dfrac{21}{10}\).
f) \(\dfrac{x}{5}-\dfrac{1}{2}=\dfrac{6}{10}\)
\(\dfrac{x}{5}=\dfrac{6}{10}+\dfrac{1}{2}\)
\(\dfrac{x}{5}=\dfrac{11}{10}\)
\(x=\dfrac{5\cdot11}{10}\)
\(x=\dfrac{55}{10}=\dfrac{11}{2}\)
Vậy \(x=\dfrac{11}{2}\).
g) \(\dfrac{x+3}{15}=\dfrac{1}{3}\\ x+3=\dfrac{15}{3}=5\\ x=5-3\\ x=2\)
Vậy \(x=2\).
h) \(\dfrac{x-12}{4}=\dfrac{1}{2}\\ x-12=\dfrac{4}{2}=2\\ x=2+12\\ x=14\)
Vậy \(x=14\).
S=30+32+34+36+...+3200
6S=32+34+36+...+3202
6S-S=(32+34+36+...+3202)-(1+32+34+...+3200)
5S=1+(32-32)+(34-34)+...+(3200-3200)+3202
S=(3200+1):5\(\frac{ }{ }\)
\(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}.\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)
\(\Rightarrow-5x-1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)
\(\Rightarrow-5x-\frac{1}{2}x-\frac{3}{2}x=\frac{-5}{6}-\frac{1}{3}+1\)
\(\Rightarrow-7x=\frac{-1}{6}\)
\(\Rightarrow x=\frac{1}{42}\)
Vậy ...
\(\)
\(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Rightarrow3.\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)
\(\Rightarrow\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)
\(\Rightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Rightarrow3x=\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{18}\)
Vậy...
9) \(\dfrac{x}{4}=\dfrac{9}{x}\)
Theo định nghĩa về hai phân số bằng nhau, ta có:
\(4\cdot9=x^2\\ 36=x^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
8)
\(x:\dfrac{5}{3}+\dfrac{1}{3}=-\dfrac{2}{5}\\ x:\dfrac{5}{3}=-\dfrac{2}{5}+\dfrac{1}{3}\\ x:\dfrac{5}{3}=-\dfrac{1}{15}\\ x=\dfrac{1}{15}\cdot\dfrac{5}{3}\\ x=\dfrac{1}{9}\)
7)
\(2x-16=40+x\\ 2x-x=40+16\\ x\left(2-1\right)=56\\ x=56\)
6)
\(1\dfrac{1}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}-\dfrac{3}{2}=-7-x\\ -7-x=0\\ x=-7-0\\ x=-7\)
5)
\(3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{7}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{7}{2}-\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{17}{6}\\ x=\dfrac{17}{6}:\dfrac{1}{2}\\ x=\dfrac{17}{3}\)
4)
\(x\cdot\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
3)
\(\left(\dfrac{2x}{5}+2\right):\left(-4\right)=-1\dfrac{1}{2}\\ \left(\dfrac{2x}{5}+2\right):\left(-4\right)=-\dfrac{3}{2}\\ \dfrac{2x}{5}+2=-\dfrac{3}{2}\cdot\left(-4\right)\\ \dfrac{2x}{5}+2=6\\ \dfrac{2x}{5}=6-2\\ \dfrac{2x}{5}=4\\ 2x=4\cdot5\\ 2x=20\\ x=20:2\\ x=10\)
2)
\(\dfrac{1}{3}+\dfrac{1}{2}:x=-0,25\\ \dfrac{1}{3}+\dfrac{1}{2}:x=-\dfrac{1}{4}\\ \dfrac{1}{2}:x=-\dfrac{1}{4}-\dfrac{1}{3}\\ \dfrac{1}{2}:x=-\dfrac{7}{12}\\ x=\dfrac{1}{2}:-\dfrac{7}{12}\\ x=-\dfrac{6}{7}\)
1)
\(\dfrac{4}{3}+x=\dfrac{2}{15}\\ x=\dfrac{2}{15}-\dfrac{4}{3}x=-\dfrac{6}{5}\)
a ) 5 . | x + 1 | - 3 = 20 . 2
5 . | x + 1 | - 3 = 1 . 2
5 . | x + 1 | - 3 = 2
5 . | x + 1 | = 2 + 3
5 . | x + 1 | = 5
| x + 1 | = 5 : 5
| x + 1 | = 1
\(\Rightarrow x+1\in\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{0;-2\right\}\)
Vậy \(x\in\left\{0;-2\right\}\)
b) ( x + 1 ) + ( x + 2 ) + ......... + ( x + 100 ) = 5750
[ ( x + 100 ) + ( x + 1 ) ] . [ ( x + 100 ) - ( x + 1 ) + 1 ] : 2 = 5750
[ 2x + 101 ] . 100 : 2 = 5750
[ 2x + 101 ] . 100 = 5750 . 2
[ 2x + 101 ] . 100 = 11500
[ 2x + 101 ] = 11500 : 100
[ 2x + 101 ] = 115
2x = 115 - 101
2x = 14
x = 14 : 2
x = 7
Vậy x = 7
c) ( 52 - 1 ) . 3 - 2 = 70
( 25 - 1 ) . 3 = 70 + 2
24 . 3 = 72
72 = 72