\(4^x-12.2^x+32=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019

\(4^x-12.2^x+32=0\Leftrightarrow\left(2^x\right)^2-2.6.2^x+6^2-4=0\Leftrightarrow\left(2^x-6\right)^2-2^2=0\)

\(\Leftrightarrow\left(2^x-6-2\right)\left(2^x-6+2\right)=0\Leftrightarrow\left(2^x-8\right)\left(2^x-4\right)=0\Leftrightarrow\orbr{\begin{cases}2^x-8=0\\2^x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2^x=8\\2^x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=2^3\\2^x=2^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)

Vậy \(S=\left\{2;3\right\}\)

3 tháng 3 2017

đặt: \(\left\{{}\begin{matrix}2^x=t\\t>0\end{matrix}\right.\)

\(t^2-12t+32=0\Leftrightarrow t^2-2.6t+36=4\)

\(\left(t-6\right)^2=2^2\Rightarrow\left[{}\begin{matrix}t=8\\t=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

25 tháng 3 2017

Ta có : 4x = (2x)2 .

=> 4x - 12.2x + 32 = 0 <=> (2x)2 - 12.2x + 36 - 4 = 0

<=> (2x - 6 )2 - 4 = 0

<=> (2x - 6 - 2 ).( 2x - 6 + 2 ) = 0

<=> ( 2x - 8 ).( 2x - 4 ) = 0 .

=> \(\left[{}\begin{matrix}2^x=8\\2^x=4\end{matrix}\right.\) => \(\left[{}\begin{matrix}2^x=2^3\\2^x=2^2\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

10 tháng 3 2019

\(a.\left(x^2+3x+2\right)\left(x^2+11x+30\right)-60=0\)

\(\Leftrightarrow\left(x^2+7x-4x+16-14\right)\left(x^2+7x+4x+16+14\right)-60=0\)

\(\Leftrightarrow\left(x^2+7x+16-4x-14\right)\left(x^2+7x+16+4x+14\right)=0\)

\(\Leftrightarrow\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60=0\)

Vì \(\left(x^2+7x+16\right)^2>0;\left(4x+14\right)^2>0\)

Nên \(\left(x^2+7x+16\right)^2-\left(4x+14\right)^2-60\ge-60\)

V...\(S=\varnothing\)

\(b.4^x-12.2^x+32=0\)

\(\Leftrightarrow\left(2^x\right)^2-2.2^x.6+36-4=0\)

\(\Leftrightarrow\left(2^x-6\right)^2-4=0\)

\(\Leftrightarrow\left(2^x-4\right)\left(2^x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2^x-4=0\\2^x-8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2^x=4\\2^x=8\end{cases}\Leftrightarrow}\orbr{\begin{cases}2^x=2^2\\2^x=2^3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=3\end{cases}}}\)

V...\(S=\left\{2;3\right\}\)

^^ đúng ko ta

29 tháng 12 2019

a) (x+1)(x+2)(x+5)(x+6)-60=0

[(x+1)(x+6)][(x+2)(x+5)]-60=0

(x^2 + 7x + 6)(x^2  + 7x + 10) - 60 = 0

đặt t = x^2 + 7x + 8

pt trở thành

(t-2)(t+2)-60=0

t^2 - 64=0 .....

t=8 hoặc t=-8.

tìm x ....

14 tháng 4 2018

a)

\(x^2-4x+4=25\)

\(\Leftrightarrow x^2-4x-21=0\)

\(\Leftrightarrow x^2+3x-7x-21=0\)

\(\Leftrightarrow x\left(x+3\right)-7\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

b)

\(\dfrac{x-17}{1990}+\dfrac{x-21}{1986}+\dfrac{x+1}{1004}=4\)

\(\Leftrightarrow\dfrac{x-17}{1990}-1+\dfrac{x-21}{1986}-1+\dfrac{x+1}{1004}-2=4-1-1-2\)

\(\Leftrightarrow\dfrac{x-17-1990}{1990}+\dfrac{x-21-1986}{1986}+\dfrac{x+1-2008}{1004}=0\)

\(\Leftrightarrow\dfrac{x-2007}{1990}+\dfrac{x-2007}{1986}+\dfrac{x-2007}{1004}=0\)

\(\Leftrightarrow\left(x-2007\right)\left(\dfrac{1}{1990}+\dfrac{1}{1986}+\dfrac{1}{1004}\right)=0\)

\(\Leftrightarrow x-2007=0\) ( Vì: \(\dfrac{1}{1990}+\dfrac{1}{1986}+\dfrac{1}{1004}\ne0\))

\(\Leftrightarrow x=2007\)

14 tháng 4 2018

c.

\(4^x-12.2^x+32=0\)

\(\Leftrightarrow\left(2^x\right)^2-12.2^x+36-4=0\)

\(\Leftrightarrow2^x-2.2^x.6+6^2-2^2=0\)
\(\Leftrightarrow\left(2^x-6\right)^2-2^2=0\)

\(\Leftrightarrow\left(2^x-6-2\right)\left(2^x-6+2\right)=0\)

\(\Leftrightarrow\left(2^x-8\right)\left(2^x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2^x-8=0\\2^x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2^x=8\\2^x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

10 tháng 3 2019

a) Từ phương trình ban đầu ta có:

(x + 1)(x + 2)(x + 5)(x + 6) = 60

\(\Leftrightarrow\) [(x + 1)(x + 6)][(x + 2)(x + 5)] = 60

\(\Leftrightarrow\) (x2 + 7x + 6)(x2 + 7x + 10) = 60 (1)

Đặt x2 + 7x + 6 = a. Thay a vào phương trình (1) ta có:

a(a + 4) = 60

\(\Leftrightarrow\) a2 + 4a + 4 = 64

\(\Leftrightarrow\) (a + 2)2 = 64

\(\Leftrightarrow\) a + 2 = \(\pm\)8

Đến đây thay x vào rồi giải tiếp

14 tháng 3 2017

Ta có : \(4^x-12.2^x+32=0\)

\(\Leftrightarrow2^x.2^x-4.2^x-8.2^x+4.8=0\)

\(\Leftrightarrow2^x.\left(2^x-4\right)-8\left(2^x-4\right)=0\)

\(\Leftrightarrow\left(2^x-8\right)\left(2^x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2^x-2^3=0\\2^x-2^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2^x=2^3\\2^x=2^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

Vậy x = 3 hoặc x = 2

14 tháng 3 2017

\(4^x-12.2^x+32=0\left(1\right)\) đăt \(t=2^x\Rightarrow t>0\)

(1) \(\Leftrightarrow\)\(\left(2^x\right)^2-12.2^x+32=0\)

\(\Leftrightarrow t^2-12t+32=0\)

\(\Leftrightarrow\) (t-8) (t-4) =0 \(\Rightarrow\left[{}\begin{matrix}t=4\\t=8\end{matrix}\right.\)

- t = 4 \(\Rightarrow2^x=2^2\Rightarrow x=2\)

- t = 8 \(\Rightarrow2^x=2^3\Rightarrow x=3\)

vậy pt có 2 nghiệm x =2 và x=3

28 tháng 2 2018

a, <=> (x-2)2=25

<=>x-2=5 hoặc x-2=-5

<=>x=7 hoặc x=-3

c,<=>(x2)2-16=0

<=>(x2)2=16

<=>x2=4

<=>x=2 hoặc x=-2

28 tháng 2 2018

HELP ME

24 tháng 6 2019

Ta có : Để M=\(\left(\frac{4}{x-4}-\frac{4}{x+4}\right)\left(\frac{x^2+8x+16}{32}\right)=0\)

<=> M=\(\left(\frac{4\left(x+4\right)-4\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)=0\)

<=>M=\(\left(\frac{4x+16-4x+16}{\left(x+4\right)\left(x-4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\left(\frac{32}{\left(x-4\right)\left(x+4\right)}\right)\left(\frac{\left(x+4\right)^2}{32}\right)\)

<=>M=\(\frac{x+4}{x-4}\)

b) Thay x=\(\frac{-3}{8}\) vào M:

M=\(\frac{x+4}{x-4}=\frac{\frac{-3}{8}+4}{\frac{-3}{8}-4}=\frac{-29}{35}\)

c)Hình như sai!

d)