Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X = 0
Y = 6
4 x X + X x Y + y
= 4 x 0 + 0 x 6 + 6
= 0 + 0 + 6
= 6
\(x:0,2+x:0,125-x\cdot3=78\)
\(=>x:\left(0,2:0,125\cdot3\right)=78\)
\(=>x:4,8=78\)
\(=>x=374,4\)
\(\cdot\)là nhân nha
ti ck mik cầu xin đó
####
\(a,\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{4}+x+\frac{1}{8}+x+\frac{1}{16}=1\)
\(\Leftrightarrow\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4\times x+\frac{15}{16}=1\)
\(\Leftrightarrow4\times x=1-\frac{15}{16}\)
\(\Leftrightarrow4\times x=\frac{1}{16}\)
\(\Leftrightarrow x=\frac{1}{16}\div4\)
\(\Leftrightarrow x=\frac{1}{64}\)
\(b,x-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(\Leftrightarrow x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{13}+...+\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\left(\frac{1}{11}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\frac{4}{55}\right]=\frac{3}{11}\)
\(\Leftrightarrow x-52=\frac{3}{11}\)
\(\Leftrightarrow x=\frac{3}{11}+52\)
\(\Leftrightarrow x=\frac{575}{11}\)
<=> 10x-9,9=0,1.x+9,9
<=> 100x-99=x+99
<=> 99x=99+99
<=> 99x=198 => x=198:99 => x=2
Đáp số: x=2
a) 5.(x-20) = 35
(x-20) = 35:5
x-20 = 7
x = 27
b) (x+125) -301 = 56
x+125 -301 = 56
x - 176 = 56
x = 56 +176
x= 232
c) 215 + (x-21):2 = 235
(x-21):2 = 235 - 215
(x-21):2 = 20
x-21 = 20 .2
x-21 = 40
x = 61
d) (x:23 +45) .67 = 8911
(x:23 +45) = 8911 : 67
x:23+45 = 133
x:23 = 133-45
x:23 = 88
x = 88.23
x = 2024
a)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}+x=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{13}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{8}{15}+x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}-\frac{8}{15}=-\frac{1}{5}\)
c)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Leftrightarrow\frac{x+1-1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{x}{x+1}=\frac{9}{10}\)
\(\Rightarrow x=9\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{15-13}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{15}\)
\(410-\left(5.x+42.x+x.3\right)=60\)
\(\Leftrightarrow\left(5.x+42.x+3.x\right)=410-60\)
\(\Leftrightarrow5.x+42.x+3.x=350\)
\(\Leftrightarrow\left(5+42+3\right).x=350\)
\(\Leftrightarrow50x=350\)
\(\Leftrightarrow x=350:50\)
\(\Leftrightarrow x=7\)
Vậy \(x=7.\)
\(410-\left(5x+42x+3x\right)=60\)
\(410-50x=60\)
\(50x=410-60\)
\(50x=350\)
\(x=7\)