Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x+1\right)^2-4\left(x+2\right)^2=9\\ \Leftrightarrow4x^2+4x+1-4\left(x^2+4x+4\right)-9=0\\ \Leftrightarrow4x^2-4x^2+4x-16x+1-16-9=0\\ \Leftrightarrow-12x=24\\ \Leftrightarrow x=\dfrac{24}{-12}=-2\\ b,\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\\ \Leftrightarrow x^2+6x+9-\left(x^2+4x-32\right)=1\\ \Leftrightarrow x^2-x^2+6x-4x=1-9-32\\ \Leftrightarrow2x=-40\\ \Leftrightarrow x=-20\\ c,3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\\ \Leftrightarrow3\left(x^2+4x+4\right)+\left(4x^2-4x+1\right)-7\left(x^2-9\right)=36\\ \Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2+63=36\\ \Leftrightarrow3x^2+4x^2-7x^2+12x-4x=36-12-1-63\\ \Leftrightarrow8x=-40\\ \Leftrightarrow x=\dfrac{-40}{8}=-5\)
3(x−1)^2−3x(x−5)=1
⇒3(x^2−2x+1)−3x^2+15x=1
⇒3x^2−6x+3−3x^2+15x=1
=9x+3=1
⇒9x=(−3)+1
⇒x=−2/9
\(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
\(\Rightarrow3\left(x^2-2x+1\right)-3x^2+15x=1\)
\(\Rightarrow3x^2-6x+3-3x^2+15x=1\)
\(=9x+3=1\)
\(\Rightarrow9x=\left(-3\right)+1\)
\(\Rightarrow x=\frac{-2}{9}\)
b)(x+3)2-(x-4)(x+8)=1
\(\Rightarrow\)x2+6x+9-(x2+8x-4x-32)=1
⇒x2+6x+9-x2-8x+4x+32=1
⇒2x+41=1
\(\Rightarrow\)2x+41-1=0
\(\Rightarrow\)2x+40=0
⇒2x=-40
\(\Rightarrow\)x=\(\dfrac{-40}{2}\)
⇒x=-20
3(x + 2)^2 + (2x - 1)^2 - 7(x + 3)(x - 3) = 36
=> 3(x^2 + 4x + 4) + 4x^2 - 4x + 1 - 7(x^2 - 9) = 36
=> 3x^2 + 12x + 12 + 4x^2 - 4x + 1 - 7x^2 + 63 = 36
=> 8x + 76 = 36
=> 8x = -40
=> x = -5
a: Ta có: \(\left(x+2\right)^2+\left(2x-1\right)^2-\left(x-3\right)^2=36\)
\(\Leftrightarrow x^2+4x+4+4x^2-4x+1-x^2+6x-9=36\)
\(\Leftrightarrow4x^2+6x-4-36=0\)
\(\Leftrightarrow4x^2+6x-40=0\)
\(\text{Δ}=6^2-4\cdot4\cdot\left(-40\right)=676\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-6-26}{8}=-4\\x_2=\dfrac{-6+26}{8}=\dfrac{5}{2}\end{matrix}\right.\)
\(\left(y-2\right)\left(y-3\right)+\left(y-2\right)-1=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+\left(y-3\right)=0\)
\(\Leftrightarrow\left(y-3\right)^2=0\)
\(\Leftrightarrow y=3\)
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{0;-3;2\right\}\)
\(A.\left(2a+1\right)^2-4\left(a+2\right)^2=9\\ \left(2a+1-2a-4\right)\left(2a+1+2a+4\right)=9\)
\(-3\left(4a+5\right)=9\\ -12a-15=9\\ -12a=24\\ a=-2\)
a) (2x + 1)2 - 4(x + 2)2 = 99
=> 4x2 + 4x + 1 - 4(x2 + 4x + 4) = 99
=> 4x2 + 4x + 1 - 4x2 - 16x - 16 = 99
=> -12x = 114
=> x = -9,5
b) (x - 3)2 - (x - 4)(x + 8) = 1
=> x2 - 6x + 9 - (x2 + 4x - 32) = 1
=> x2 - 6x + 9 - x2 - 4x + 32 = 1
=> -10x = -40
=> x = 4
c) 3(x + 2)2 + (2x - 1)2 - 7(x - 3)(x + 3) = 36
=> 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 36
=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
=> 8x = -40
=> x = -5
a) ( 2x + 1 ) - 4( x + 2 )2 = 99
<=> 4x2 + 4x + 1 - 4( x2 + 4x + 4 ) = 99
<=> 4x2 + 4x + 1 - 4x2 - 16x - 16 = 99
<=> -12x - 15 = 99
<=> -12x = 114
<=> x = -114/12 = -19/2
b) ( x + 3 )2 - ( x - 4 )( x + 8 ) = 1
<=> x2 + 6x + 9 - ( x2 + 4x - 32 ) = 1
<=> x2 + 6x + 9 - x2 - 4x + 32 = 1
<=> 2x + 41 = 1
<=> 2x = -40
<=> x = -20
c) 3( x + 2 )2 + ( 2x - 1 )2 - 7( x + 3 )( x - 3 ) = 36
<=> 3( x2 + 4x + 4 ) + 4x2 - 4x + 1 - 7( x2 - 9 ) = 36
<=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
<=> 8x + 76 = 36
<=> 8x = -40
<=> x = -5
3.(x+3)2+(2x-1)2-7(x-3)=36
=>3x2+18x+27+4x2-4x+1-7x+21=36
=>7x2+7x+49=36
=>7x2+7x+49-36=0
=>7x2+7x+13=0
\(\Rightarrow7\left(x+\frac{1}{2}\right)^2+\frac{45}{4}>0\)với mọi x ->vô nghiệm
giống mình