Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(\left(x^2-2\right)\left(1-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x^2-x^3-2+2x+x^3+27=x^2+2x+25\)
a,\(8x^2-8xy+2x=2x\left(4x-8y+1\right)\)
b,\(\left(x^2+2x\right)\left(x^2+4x+3\right)-24=x\left(x+2\right)\left(x+1\right)\left(x+3\right)-24\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)-24=\left(t+1\right)\left(t-1\right)-24=t^2-5^2=\left(t+5\right)\left(t-5\right)\)
\(=\left(x^2+3x+6\right)\left(x^2+3x-4\right)\)( đặt t = x2 + 3x + 1 )
ta có x3+y3=(x+y)(x2-xy+1)=9
mà x+y=3 => x2-xy+1=3 => x2-xy=2 => x(x-y)=2
x,y là số thực => x-y là số thực => x;x-y \(\inƯ_{\left(2\right)}=\left\{-2;-1;1;2\right\}\)
với x=-2 => không có giá trị y thỏa mãn
với x=-1 => không có giá trị y thỏa mãn
với x=1; x+y=3 => y=2
với x=2; x+y=3 => y=1
vậy (x;y)=(1;2);(2;1)
x + y = 3 => y = 3 - x
x3 + y3 = 9
<=> x3 + ( 3 - x )3 = 9
<=> x3 - x3 + 9x2 - 27x + 27 - 9 = 0
<=> 9x2 - 27x + 18 = 0
<=> 9( x2 - 3x + 2 ) = 0
<=> 9( x2 - x - 2x + 2 ) = 0
<=> 9[ x( x - 1 ) - 2( x - 1 ) ] = 0
<=> 9( x - 2 )( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Với x = 2 => 2 + y = 3 => y = 1
Với x = 1 => 1 + y = 3 => y = 2
Vậy các cặp số ( x ; y ) thỏa mãn là : ( 2 ; 1 ) , ( 1 ; 2 )
\(x^3+9x^2+26x+24=\left(x^2+7x+12\right)\left(x+2\right)=\left(x+3\right)\left(x+4\right)\left(x+2\right)\)
Ta có: \(x^3+9x^2+26x+24\)
\(=\left(x^3+2x^2\right)+\left(7x^2+14x\right)+\left(12x+24\right)\)
\(=x^2\left(x+2\right)+7x\left(x+2\right)+12\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+7x+12\right)\)
\(=\left(x+2\right)\left[\left(x^2+3x\right)+\left(4x+12\right)\right]\)
\(=\left(x+2\right)\left[x\left(x+3\right)+4\left(x+3\right)\right]\)
\(=\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
a: \(=\dfrac{x^3-x^2-7x+3}{x-3}=\dfrac{x^3-3x^2+2x^2-6x-x+3}{x-3}=x^2+2x-1\)
b: \(=\dfrac{2x^4-4x^2-3x^3+6x+x^2-2}{x^2-2}=2x^2-3x+1\)
\(3x^2+7x=10\)
\(3x^2+7x-10=0\)
\(\left(x-1\right)\left(3x+10\right)=0\)
\(\orbr{\begin{cases}x-1=0\\3x+10=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}}\)
\(3x^2+7x=10\)
\(\Leftrightarrow3x^2+7x-10=0\)
\(\Leftrightarrow3x^2-3x+10x-10=0\)
\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\3x=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}\)
Vậy \(x=1\)hoặc \(x=-\frac{10}{3}\)