Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:3x-/2x-2/=1
=>/2x-2/=3x-1
Vì /2x-2/\(\ge\)0=>3x-1\(\ge\)0=>3x\(\ge\)1=>x\(\ge\)1
Vì x\(\ge\)1=>2x-2\(\ge\)0 =>/2x-2/=2x-2
Hay 2x-2=3x-1
2x-3x=-1+2
-x=1
x=-1
\(x\ge-\frac{1}{2}\Rightarrow3x-2x-1=0\Rightarrow x=1\)
\(x< \frac{-1}{2}\Rightarrow3x+2x+1\Rightarrow x=-\frac{1}{5}\left(loai\right)\)
\(3x-|2x-1|=2\Leftrightarrow|2x-1|=2-3x\)
\(\Rightarrow-2x+1=2-3x\)hoặc \(-2x+1=3x-2\)
\(\Rightarrow1x+1=2\)hoặc \(-5x+1=-2\)
\(\Rightarrow x=1\)hoặc\(x=\frac{5}{3}\)
\(A=\left|2x-1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(B=\left|2x-2014\right|+2015\ge2015\forall x\)
Dấu '=' xảy ra khi x=1007
|x - 1,3| + |2x - 1| = 0
Có |x - 1,3| \(\ge\)0
|2x - 1| \(\ge\)0
=> Để |x - 1,3| + |2x - 1| = 0
=> |x - 1,3| = 0 và |2x - 1| = 0
=> x - 1,3 = 0 và 2x - 1 = 0
=> x = 1,3 và 2x = 1
=> x = 1,3 và x = 0,5 (vô lí vì x không thể cùng lúc nhận 2 giá trị)
=> Không có giá trị của x thỏa mãn đề bài
* Nếu \(x< 1\)
=> 1 - x + 3 - x = 2
<=> 4 - 2x = 2
<=> x = 1 (không TM)
* Nếu \(1\le x< 3\)
=> x - 1 + 3 - x = 2
<=> 2 = 2 (đúng)
=> phương trình luôn có nghiệm.
* Nếu \(x\ge3\)
=> x - 1 + x - 3 = 2
<=> 2x - 4 = 2
<=> x = 3 (TM)
Vậy với \(1\le x< 3\)thì phương trình luôn có nghiệm
với \(x\ge3\)thì phương trình có nghiệm x = 3.
Ta có \(|x-1|+|x-3|=2\)\(\Rightarrow|x-1|+|3-x|=2\)
Áp dụng bất đẳng thức \(|a|+|b|\ge|a+b|\)
Dấu bằng xảy ra khi và chỉ khi \(ab\ge0\)
Do đó \(|x-1|+|3-x|\ge|x-1+3-x|=|2|=2\)
Dấu bằng xảy ra khi và chỉ khi \(\left(x-1\right)\left(3-x\right)\ge0\)
\(\cdot\orbr{\begin{cases}\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\\\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\)
\(\cdot\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\Rightarrow1\le x\le3\)
\(\cdot\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\)( vô lý )
Vậy \(1\le x\le3\)
PS : vì đề bài không yêu cầu tìm \(x\in Z\) nên mình để đáp số như vậy
còn nếu yêu cầu bạn phải tìm được 3 giá trị của x là 1;2;3
Tìm x , biết :
1 , | x + 2 | - | x + 1 | = 0
2 , | x + 1 | + | x + 4 | = 3x
3 , | 2x - 1 | \(\le\)5
-7 - 5.| 2x + 1 | = x
=> -5.| 2x + 1 | = x+7 (*)
Xét 2x + 1 ≥ 0 => x ≥ \({{-1} \over 2}\)
=> Phương trình (*) có dạng:
-5(2x+1) = x+7
<=> -10x - 5 = x + 7
<=> -11x = 12<=> \(x = {{-12} \over 11}\)( Loại)
Xét 2x + 1 < 0 => x < \({{-1} \over 2}\)
=> Phương trình (*) có dạng:
-5( -2x - 1 ) = x + 7
<=>10x + 5 = x + 7
<=> 9x = 2
<=> \(x = {{2} \over 9}\)(Loại)
Vậy pt vô nghiệm
\(2x-\left|x+1\right|=-\frac{1}{2}\)
\(=>2x+\frac{1}{2}=\left|x+1\right|\)
Mà \(\left|x+1\right|\ge0\) nên \(2x+\frac{1}{2}\ge0\)
\(=>2x\ge-\frac{1}{2}=>x\ge-\frac{1}{4}\)
\(=>2x+\frac{1}{2}=x+1=>x=\frac{1}{2}\)