Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(A=3x^2-x+1\)
\(A=3\left(x^2-2.\frac{1}{6}x+\frac{1}{36}\right)+\frac{11}{12}\)
\(A=3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\)
Vì \(3\left(x-\frac{1}{6}\right)^2\ge0\Rightarrow3\left(x-\frac{1}{6}\right)^2+\frac{11}{12}\ge\frac{11}{12}\)
Dấu = xảy ra khi \(x-\frac{1}{6}=0\Rightarrow x=\frac{1}{6}\)
Vậy Min A = \(\frac{11}{12}\) khi x=1/6
b)Tương tụ
\(-9x^2+24x-18=-\left(9x^2-2\times3x\times4+16+2\right)\)
\(=-\left(3x-4\right)^2-2\le-2\)
Các câu sau tương tự.
17) \(\left(x^2-11x+30\right)\left(x^2-13x+30\right)=24x^2\)
\(\left(x-11+\frac{30}{x}\right)\left(x-13+\frac{30}{x}\right)=24\)
\(t\left(t-2\right)=24\)
\(\left(t-1\right)^2=25\)
t =6 hoặc t =-4
+\(\left(x-11+\frac{30}{x}\right)=6\Leftrightarrow x^2-11x+30=6x\Leftrightarrow x^2-17x+30=0\)
+\(\left(x-11+\frac{30}{x}\right)=-4\)
a, \(A=4-2x^2\le4\)
Dấu ''='' xảy ra khi x = 0
Vậy GTLN A là 4 khi x = 0
b, \(B=-x^2+10x-5=-\left(x^2-10x+5\right)=-\left(x^2-10x+25-20\right)\)
\(=-\left(x-5\right)^2+20\le20\)Dấu ''='' xảy ra khi x = 5
Vậy GTLN B là 20 khi x = 5
c, \(C=-3x^2+3x-5=-3\left(x^2-x+\frac{5}{3}\right)\)
\(=-3\left(x^2-x+\frac{1}{4}+\frac{17}{12}\right)=-3\left(x-\frac{1}{2}\right)^2-\frac{51}{12}\le-\frac{51}{21}=-\frac{17}{7}\)
Vậy GTLN C là -17/7 khi x = 1/2
d, tương tự
1. Với \(x^2-2\ge0\Rightarrow\orbr{\begin{cases}x\ge\sqrt{2}\\x\le-\sqrt{2}\end{cases}}\)
Pt\(\Leftrightarrow x^4-4x^2+5x^2-10+8=0\Rightarrow x^4+x^2-2=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+1\right)=0\Rightarrow x^2=2\Rightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}\left(tm\right)}\)
Với \(x^2-2< 0\Rightarrow-\sqrt{2}< x< \sqrt{2}\)
Pt \(\Leftrightarrow x^4-4x^2+10-5x^2+8=0\Leftrightarrow x^4-9x^2+18=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-6=0\\x^2-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=6\\x^2=3\end{cases}\left(l\right)}\)vì \(x\notin\left(-\sqrt{2};\sqrt{2}\right)\)
2. \(2x^4-20x+18=0\Rightarrow x^4-10x+9=0\)
\(\Rightarrow\left(x^4-x^3\right)+\left(x^3-x^2\right)+\left(x^2-x\right)-\left(9x-9\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^3+x^2+x-9\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x^3+x^2+x-9=0\end{cases}}\)
\(\Rightarrow x=1\)
\(20x^2+24x+18=500\)
\(20x^2+24x-482=0\)
\(10x^2+12x-241=0\)
\(\orbr{\begin{cases}x=\frac{-6+\sqrt{2446}}{10}\\x=\frac{-6-\sqrt{2446}}{10}\end{cases}}\)
20x2 + 24x + 18 = 500
<=> 20x2 + 24x + 18 - 500 = 0
<=> 20x2 + 24x - 482 = 0
<=> 2( 10x2 + 12x - 241 ) = 0
<=> 10x2 + 12x - 241 = 0 (*)
\(\Delta'=b'^2-ac=\left(\frac{b}{2}\right)^2-ac=6^2-10\cdot\left(-241\right)=36+2410=2446\)
\(\Delta'>0\)nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-6+\sqrt{2446}}{10}\\x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-6-\sqrt{2446}}{10}\end{cases}}\)
Lớp 8 sao nghiệm xấu thế nhỉ ;-;