Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\)) \(5-\left(10-x\right)=7\)
\(10-x=5-7\)
\(10-x=-2\)
\(x=10-\left(-2\right)\)
\(x=12\)
\(2\)) \(-32-\left(x-5\right)=0\)
\(x-5=-32-0\)
\(x-5=-32\)
\(x=-32+5\)
\(x=-27\)
(x² + 7)(x² - 7) < 0
⇒ x² - 7 < 0
⇒ x² < 7
⇒ -√7 < x < √7
Mà x ∈ Z
⇒ x ∈ {-2; -1; 0; 1; 2}
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+7 | 1 | -1 | 2 | -2 |
x | -6 | -8 | -5 | -9 |
\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
\(35-5\left(x-1\right)=10\\ \Leftrightarrow35-5x+5=10\\ \Rightarrow40-5x=10\)
\(\Rightarrow-5x=10-40\\ \Rightarrow-5x=-30\\ \Rightarrow x=\dfrac{-30}{-5}=6\)
c)
\(24\left(x-16\right)=12^2\)
\(\Rightarrow24x-384=144\\ \Rightarrow24x=144+384\\ \Rightarrow24x=528\\ \Rightarrow x=\dfrac{528}{24}=22\)
d)
\(\left(x^2-10\right)\div5=3\\ \Rightarrow\left(x^2-10\right)=3\times5\\ \Rightarrow x^2-10=15\)
\(\Rightarrow x^2=15+10\\ \Rightarrow x^2=25\\ \Rightarrow x^2=5^2\Rightarrow x=5\)
\(2\left(x-7\right)+x=10\)
\(2x-14+x=10\)
\(2x+x=10+14\)
\(\left(2+1\right)\cdot x=24\)
\(3x=24\)
\(x=24\div3\)
\(x=8\)
\(2.\left(x-7\right)+x=10\)
\(\Rightarrow2x-14+x=10\)
\(\Rightarrow2x+x-14=10\)
\(\Rightarrow3x=10+14=24\)
\(\Rightarrow x=24:3\)
\(\Rightarrow x=8\)