Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{x_1-1}{10}=.....=\frac{x_{10}-10}{1}=\frac{\left(x_1+x_2+....+x_{10}\right)-\left(1+2+3+...+10\right)}{1+2+3+...+10}\)
\(=\frac{45}{55}=\frac{9}{11}\)
Giải ra ta được
\(x_1=\frac{101}{11}\)
\(x_2=\frac{103}{11}\)
........
\(x_{10}=\frac{119}{11}\)

Ta có \(x1-\frac{1}{9}=x2-\frac{2}{8}=...=x9-\frac{9}{1}\)
\(=\frac{x1-1}{9}=\frac{x2-2}{8}=\frac{x3-3}{7}=...=\frac{x9-9}{1}\)
= \(\frac{x1-1+x2-2+x3-3+...+x9-9}{9+8+7+...+1}\)
\(=\frac{\left(x1+x2+x3+...+x9\right)-\left(1+2+3+...+9\right)}{9+8+7+....+1}\)
=\(\frac{90-45}{45}=\frac{45}{45}=1\)
=> \(\hept{\begin{cases}\begin{cases}x1=10\\x2=10\end{cases}\\.....\\x9=10\end{cases}}\)
Đáp án:ta có :
X1-1/9=X2-2/8=X3-3/7=......X9-9/1
Áp dụn t/c dãy tỉ số bằng nhau
⇒(X1 +X2+X3+........X9)-(1+2+3+...+9)/1=2+3+...+9
=90-45/45=1
⇒X1=X2=X3=X4=..=X9=10

Vì x,y tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{3}=\dfrac{-2}{\dfrac{3}{8}}=-2\cdot\dfrac{8}{3}=-\dfrac{16}{3}\)
=>\(x_1=-16\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_2}{x_1}=\dfrac{y_2}{y_1}\)
\(\Leftrightarrow\dfrac{x_2}{-6}=\dfrac{y_2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{-6}=\dfrac{y_2}{4}=\dfrac{y_2-x_2}{4-\left(-6\right)}=\dfrac{-5}{10}=-\dfrac{1}{2}\)
Do đó: \(x_2=3;y_2=-2\)

a: Vì x,y là hai đại lượng tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\dfrac{-3}{5}:\dfrac{1}{9}\cdot3=-\dfrac{81}{5}\)
b: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\Leftrightarrow\dfrac{x_2}{5}=\dfrac{y_2}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{5}=\dfrac{y_2}{-2}=\dfrac{y_2-x_2}{-2-5}=\dfrac{-7}{-7}=1\)
Do đó: \(x_2=5;y_2=-2\)