Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{1999}{2001}\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{2}{x.\left(x+1\right)}\right)=\frac{1}{2}.\frac{1999}{2001}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{1999}{4002}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\)\(\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}=\frac{1}{2001}\)
\(\Rightarrow x+1=2001\)
\(\Rightarrow x=2001-1=2000\)
Vậy \(x=2000.\)
Chỗ \(x\) phải là \(\frac{2}{x\left(x+1\right)}\) chứ bạn :)
Ta có :
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)
\(\Leftrightarrow\)\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{1}{2}.\frac{1999}{2001}\) ( nhân hai vế cho \(\frac{1}{2}\) )
\(\Leftrightarrow\)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)
\(\Leftrightarrow\)\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x-1}=\frac{1999}{4002}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{x-1}=\frac{1999}{4002}\)
\(\Leftrightarrow\)\(\frac{1}{x-1}=\frac{1}{2}-\frac{1999}{4002}\)
\(\Leftrightarrow\)\(\frac{1}{x-1}=\frac{1}{2001}\)
\(\Leftrightarrow\)\(x-1=2001\)
\(\Leftrightarrow\)\(x=2001+1\)
\(\Leftrightarrow\)\(x=2002\)
Vậy \(x=2002\)
Chúc bạn học tốt ~
1/2 . 1/3 . 1/4 . 1/5 . 1/6 . ( x - 1,010 ) = 1/360 - 1/720
1/2 . 1/3 . 1/4 . 1/5 . 1/6 . ( x - 1,010) = 1/720
( x - 1,010 ) . 1/2 . 1/3 . 1/4 . 1/5 . 1/6 = 1/720
( x - 1,010 ) . 1/720 = 1/720
x - 1,010 = 1/720 : 1/720
x - 1,010 = 1
x = 1 + 1,010
x = 2,01
2/
a) \(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(=\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
b) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{2017}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot..\cdot\frac{2016}{2017}\)
\(=\frac{1}{2017}\)
c) \(A=2000-5-5-5-..-5\)(có 200 số 5)
\(A=2000-\left(5\cdot200\right)\)
\(A=2000-1000\)
\(A=1000\)
Câu b:
\(\frac{21}{8}:\frac{5}{6}+\frac{1}{2}:\frac{5}{6}\)
= \(\frac{63}{20}+\frac{3}{5}\)
= \(\frac{15}{4}\)
\(\left(\frac{21}{8}+\frac{1}{2}\right):\frac{5}{6}\)
\(\frac{25}{8}:\frac{5}{6}\)
\(\frac{25}{8}.\frac{6}{5}\)
\(\frac{30}{8}\)
\(\left(1-\frac{1}{3}\right)\)\(x\left(1-\frac{1}{6}\right)\)\(x\)\(\left(1-\frac{1}{10}\right)\)\(x\)\(\left(1-\frac{1}{15}\right)\)\(x\)\(\left(1-\frac{1}{21}\right)\)\(x\)\(\left(1-\frac{1}{28}\right)\)\(=\)\(\left(\frac{3}{3}-\frac{1}{3}\right)\)\(x\)\(\left(\frac{6}{6}-\frac{1}{6}\right)\)\(x\)\(\left(\frac{10}{10}-\frac{1}{10}\right)\)\(x\)\(\left(\frac{15}{15}-\frac{1}{15}\right)\)\(x\)\(\left(\frac{21}{21}-\frac{1}{21}\right)\)\(x\)\(\left(\frac{28}{28}-\frac{1}{28}\right)\)\(=\)\(\frac{2}{3}x\frac{5}{6}x\frac{9}{10}x\frac{14}{15}x\frac{20}{21}x\frac{27}{28}\)\(=\)\(\frac{2x5x9x14x20x27}{3x6x10x15x21x28}\)\(=\)\(\frac{2x5\left(3x3\right)x\left(2x7\right)x\left(5x4\right)x\left(3x3x3\right)}{3x\left(3x2\right)x\left(5x2\right)x\left(5x3\right)x\left(7x3\right)x\left(4x7\right)}\)\(=\)\(\frac{3}{7}\)
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{10}\right)=\frac{x}{2010}\)
\(\Leftrightarrow\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{9}{10}=\frac{x}{2010}\)
\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot....\cdot9}{2\cdot3\cdot4\cdot....\cdot10}=\frac{x}{2010}\)
\(\Leftrightarrow\frac{1}{10}=\frac{x}{2010}\)
\(\Leftrightarrow x=\frac{2010}{10}=201\)
Ta có : \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{10}\right)=\frac{x}{2010}\)
=> \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{9}{10}=\frac{x}{2010}\)
\(\Rightarrow\frac{1.2.3......9}{2.3.4.....10}=\frac{x}{2010}\)
\(\Rightarrow\frac{1}{10}=\frac{x}{2010}\)
\(\Rightarrow x=\frac{2010}{10}=201\)
\(=\frac{1}{10}\)