Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. y2=−5y2=−5
b. {y1=−8y2=−4{y1=−8y2=−4
Giải thích các bước giải:
a. Vì x, y là 2 đại lượng tỉ lệ nghịch với x1,x2x1,x2 là 2 giá trị bất kì của x và y1,y2y1,y2 là 2 giá trị tương ứng của y
Suy ra: x1.y1=x2.y2x1.y1=x2.y2
⇒ y2=x1.y1x2=−459=−5y2=x1.y1x2=−459=−5
b. Theo câu a:
x1.y1=x2.y2⇔2y1=4y2⇔y1=2y2x1.y1=x2.y2⇔2y1=4y2⇔y1=2y2
Ta có:
{y1=2y2y1+y2=−12⇔{y1=−8y2=−4
Do \(\left|2x+3\right|=x+2\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=x+2\\2x+3=-\left(x+2\right)\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-x=2-3\\2x+3=-x-2\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\2x+x=-2-3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\3x=-5\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-\frac{5}{3}\end{array}\right.\)
\(\left|2x+3\right|=x+2\) (1)
+)TH1: \(2x+3\ge0\Rightarrow x\ge-\frac{3}{2}\) yhif pt (1) trở thành
\(2x+3=x+2\Leftrightarrow x=-1\left(Tm\right)\)
+)TH2: \(2x+3< 0\Leftrightarrow x< -\frac{3}{2}\) thi pt (1) trở thành
\(-2x-3=x+2\Leftrightarrow-3x=5\Leftrightarrow x=-\frac{5}{3}\) (TM)
\(\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}=\frac{x+11}{15}+\frac{x+11}{16}\)
\(\Rightarrow\frac{x+11}{12}+\frac{x+11}{13}+\frac{x+11}{14}-\frac{x+11}{15}-\frac{x+11}{16}=0\)
\(\Rightarrow\left(x+11\right)\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)
Mà \(\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)\ne0\)
\(\Rightarrow x+11=0\Rightarrow x=-11\)
a)(|x-2|-3)(5+|x|)=0
<=>|x-2|-3=0 hoặc 5+|x|=0
*)Xét |x-2|-3=0 <=>|x-2|=3
=>x-2=±3
Với x-2=3 =>x=5
Với x-2=-3 =>x=-1
*)Xét 5+|x|=0
=>|x|=-5 (mà \(\left|x\right|\ge0>-5\) với mọi x)
=>vô nghiệm
(2x-1)2=1-2x
<=>4x2-4x+1=1-2x
<=>4x2-2x=0
<=>2x(2x-1)=0
<=>x=0 hoặc x=\(\frac{1}{2}\)