Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c)\) \(\left|2x-1\right|-2x=3\)
\(\Leftrightarrow\)\(\left|2x-1\right|=2x+3\)
Ta có : \(\left|2x-1\right|\ge0\)
\(\Rightarrow\)\(2x+3\ge0\)\(\Rightarrow\)\(2x\ge-3\)\(\Rightarrow\)\(x\ge\frac{-3}{2}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=2x+3\\2x-1=-2x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-2x=3+1\\2x+2x=-3+1\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}0=4\\4x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}0=4\left(loai\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}}\)
Vậy \(x=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(b)\) \(3\left(2x-1\right)-\left|x-5\right|=7\)
\(\Leftrightarrow\)\(3\left(2x-1\right)-7=\left|x-5\right|\)
\(\Leftrightarrow\)\(6x-3-7=\left|x-5\right|\)
\(\Leftrightarrow\)\(\left|x-5\right|=6x-10\)
Ta có : \(\left|x-5\right|\ge0\)
\(\Rightarrow\)\(6x-10\ge0\)\(\Rightarrow\)\(6x\ge10\)\(\Rightarrow\)\(x\ge\frac{5}{3}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=6x-10\\x-5=10-6x\end{cases}\Leftrightarrow\orbr{\begin{cases}6x-x=-5+10\\x+6x=10+5\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x=5\\7x=15\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=\frac{15}{7}\left(tm\right)\end{cases}}}\)
Vậy \(x=\frac{15}{7}\)
Chúc bạn học tốt ~
a: Trường hợp 1: x<-2
Pt sẽ là -x-2+3-2x=5
=>-3x+1=5
=>-3x=4
hay x=-4/3(loại)
Trường hợp 2: -2<=x<3/2
Pt sẽ là x+2+3-2x=5
=>5-x=5
hay x=0(nhận)
Trường hợp 2: x>=3/2
Pt sẽ là x+2+2x-3=5
=>3x-1=5
hay x=2(nhận)
b: \(\Leftrightarrow\left|x-5\right|=6x-3-7=6x-10\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{3}\\\left(6x-10-x+5\right)\left(6x-10+x-5\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{3}\\\left(5x-5\right)\left(7x-15\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{15}{7}\)
c: \(\Leftrightarrow\left|2x-1\right|=2x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{2}\\\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)=0\end{matrix}\right.\Leftrightarrow x=-\dfrac{1}{2}\)
d: =>|3x-2|=3x-2
=>3x-2>=0
hay x>=2/3
1) Ta có \(\hept{\begin{cases}\left|x\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|x\right|+\left|y-2\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy x = 0 ; y = 2
Thay x = 0 ; y = 2 vào B
=> B = 2.0 - 5.2 + 7.0.2 = -10
Vậy B = -10
Bài 2:
\(a)\)
\(A=\left|x-2021\right|+5\)
Ta có:
\(\left|x-2021\right|\ge0\Rightarrow\left|x-2021\right|+5\ge5\)
Dấu '' = '' xảy ra khi:
\(x-2021=0\)
\(\Leftrightarrow x=2021\)
Vậy \(MinA=5\Leftrightarrow x=2021\)
\(b)\)
\(B=\left|x-2\right|+\left|x-5\right|\)
\(B=\left|x-2\right|+\left|x-5\right|\ge\left|x-2+5-x\right|=\left|3\right|=3\)
Dấu '' = '' xảy ra khi:
\(\left(x-2\right)\left(5-x\right)\ge0\)
\(\Leftrightarrow2\le x\le5\)
Vậy \(MinB=3\Leftrightarrow2\le x\le5\)
Vì GTTĐ luôn lớn hơn hoặc bằng 0
=> x - 1 + x - 3 + x - 5 + x - 7 = 8
4x - 16 = 8
4x = 8 + 16
4x = 24
=> x = 6
Vậy.........
\(15-2\left|x+5\right|=2x-30\)
\(\Leftrightarrow-2\left|x+5\right|=2x-45\) (1)
+)TH1: x>= -5 thì (1) trở thành:
-2(x+5)=2x-45 <=> -2x-10=2x-45 <=> -4x=-35 <=> x=35/4(tm)
+)TH2: x<-5 trhif pt(1) trở thành:
2(x+5)=2x-45 <=> 2x+10=2x-45 <=> 0x=-55 (vô nghiệm)
Vậy x=35/4
15 - 2 / x+ 5/ = 2x -30
=> 2 / x + 5 / = 15 -2x -30 = -15 -2x
=> 2( x + 5 ) = -15 -2x => 2x + 10 = -15 -2x => 10 +15 = -2x -2x => ..........
và 2( -x - 5 ) = -15 -2x => ................................
cứ như thế bạn làm tiếp nhé