Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4 - 10x3 - 15x2 + 20x + 4
= x4 + 2x3 - 12x3 - 24x2 + 9x2 + 18x + 2x + 4
= x3(x + 2) - 12x2(x + 2) + 9x(x + 2) + 2(x + 2)
= (x + 2)(x3 - 12x2 + 9x + 2)
b)
2x4 - 5x3 - 27x2 + 25x + 50
= 2x3(x - 2) - x2(x - 2) - 25x(x - 2) - 25(x - 2)
= (x - 2)(2x3 - x2 - 25x - 25)
c)\(3x^4+6x^3-33x^2-24x+48\)
\(=3\left(x^4+2x^3-11x^2-8x+16\right)\)
\(=3\left(x^4-x^3-4x^2+3x^3-3x^2-12x-4x^2+4x+16\right)\)
\(=3\left(x^2\left(x^2-x-4\right)+3x\left(x^2-x-4\right)-4\left(x^2-x-4\right)\right)\)
\(=3\left(x^2+3x-4\right)\left(x^2-x-4\right)\)
\(=3\left(x^2-x+4x-4\right)\left(x^2-x-4\right)\)
\(=3\left[x\left(x-1\right)+4\left(x-1\right)\right]\left(x^2-x-4\right)\)
\(=3\left(x-1\right)\left(x+4\right)\left(x^2-x-4\right)\)
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
1)\(6x^2-20x+6=0\)
<=>\(6x^2-18x-2x+6=0\)
<=>6x(x-3)-2(x-3)=0
<=>(6x-2)(x-3)=0
<=>6x-2=0
hoặc x-3=0
<=>x=\(\frac{1}{3}\)
hoặc x=3
Vậy...
2)\(8x^2+10x-3=0\)
=>\(8x^2-2x+12x-3=0\)
<=>2x(4x-1)+3(4x-1)=0
<=>(2x+3)(4x-1)=0
<=>2x+3=0<=>x=\(\frac{3}{2}\)
hoặc 4x-1=0<=>x=\(\frac{1}{4}\)
Vậy ........
3)Phương trình tương đương: \(4x^2-2x+10x-5=0\)
<=> 2x(2x-1)+5(2x-1)=0
<=> (2x+5)(2x-1)=0
Giải ra các trường hợp là xong
4)Phương trình tương đương:\(x^2-10x+25-1=0\)
<=>\(\left(x-5\right)^2-1^2=0\)
<=>(x-5-1)(x-5+1)=0
<=>(x-6)(x-4)=0 Giải các TH nữa là xong
5)\(x^2-5x-24\)=0
<=>\(x^2-8x+3x-24=0\)
<=>x(x-8)+3(x-8)=0
<=>(x+3)(x-8)=0
Giải ra các nghiệm nữa là xong
6)Phương trình tương đương :\(x^4+6x^2+9-9x^2=0\)
<=> \(\left(x^2+3\right)^2-\left(3x\right)^2\)
<=> \(\left(x^2+3x+3\right)\left(x^2-3x+3\right)\)=0
Đến đây tự làm nhé
7)Phương trình tương đương :\(4x^4-12x^2+9-8=0\)
<=>\(\left(2x-3\right)^2-\sqrt{8}^2\)=0
<=>(2x-3-\(\sqrt{8}\))\(\left(2x-3+\sqrt{8}\right)\)=0
Đến đây dễ rồi
a) \(x^3-0,25x=0\\ < =>x\left(x^2-0,25\right)=0\\ =>\left[{}\begin{matrix}x=0\\x^2-0,25=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=\sqrt{0,25}\end{matrix}\right.\)
b) \(x^2-10x=-25\\ < =>x^2-10x+25=0\\ < =>\left(x-5\right)^2=0\\ < =>x-5=0\\=>x=5\)
a) \(x^3-0,25x=0\)
\(x\left(x^2-0,25\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-0,25=0\)
\(\Leftrightarrow x=0\) hoặc \(x=0,25\) hoặc \(x=-0,25\)
b) \(x^2-10x=-25\)
\(\Leftrightarrow x\left(x-10\right)=-25\)
\(\Leftrightarrow x=-25\) hoặc \(\Leftrightarrow x-10=-25\)
\(\Leftrightarrow x=-25\) hoặc x=-15
a) Ta có : x3 - x = 0
=> x(x2 - 1) = 0
=> \(\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy \(x\in\left\{0;1;-1\right\}\)
b) x2 + 4x = 0
=> x(x + 4) = 0
=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
Vậy \(x\in\left\{0;-4\right\}\)
c) 9x2 - 1 = 0
=> 9x2 = 1
=> x2 = \(\frac{1}{9}\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{3};-\frac{1}{3}\right\}\)
d) 5x2 - 10x + 5 = 0
=> 5x2 - 5x - 5x + 5 = 0
=> 5x(x - 1) - 5(x - 1) = 0
=> 5(x - 1)2 = 0
=> (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
e) x2 + 6x + 5 = 0
=> x2 + 6x + 9 - 4 = 0
=> (x + 3)2 = 4
=> \(\orbr{\begin{cases}x+3=2\\x+3=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}\)
Vậy \(x\in\left\{-1;-5\right\}\)
a) ... \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\hept{\begin{cases}x=1\\x=2\\x=-2\end{cases}}\)Vậy.....
b) ... \(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\Rightarrow x\in\theta\end{cases}}\)(\(\theta\)là rỗng) Vậy.........
c) ... \(\Leftrightarrow2x-3=x+5\Leftrightarrow x=8\)Vậy.......
d) ... \(\Leftrightarrow x\left(x^2-16\right)=0\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}\)Vậy......
\(10x^2-33x-7=0\)
\(=10x^2+2x-35x-7\)
\(=2x.\left(5x+1\right)-7.\left(5x+1\right)\)
\(=\left(2x-7\right).\left(5x+1\right)\)
\(10x^2-33x-7=0\)
\(\Leftrightarrow10x^2-35x+2x-7=0\)
\(\Leftrightarrow5x\left(2x-7\right)+\left(2x-7\right)=0\)
\(\Leftrightarrow\left(5x+1\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x+1=0\\2x-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=\frac{7}{2}\end{cases}}}\)