K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2016

Gọi \(A=\frac{1005}{2011}\)

A=1/3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)

A=1/1.3 + 1/3.5 + 1/5.7 +...............+1/x.(x+2)

A . 2=2/1.3 + 2/3.5 + 2/5.7 +......................+2/x.(x+2)

A . 2=1/1-1/3+1/3-1/5+1/5-1/7+..............+1/x-1/x+2

A . 2=1/1+(1/3-1/3)+(1/5-1/5)+..............+(1/x-1/x)-1/x+2

A . 2=1/1-1/x+2

Suy gia:1005/2011 . 2=1/1-1/x+2

             2010/2011    =1/1-1/x+2

             1/x+2           =1/1-2010/2011

              1/x+2          =1/2011

Suy gia:x+2=2011

            x    =2011-2

            x    =2009

16 tháng 4 2019

A=1/1*3+1/3*5+...+1/2017*2019

2A=2/1*3+2/3*5+...+2/2017*2019

2A=1-1/3+1/3-1/5+..+1/2017-1/2019

2A=1-1/2019

2A=2018/2019

A=(2018/2019):2

A=1009/2019

16 tháng 4 2019

A=1009/2019

6 tháng 4 2017

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{1005}{2011}\)

\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x.\left(x+2\right)}\right)=\frac{1005}{2011}\)

\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\frac{1}{3}-\frac{1}{x+2}=\frac{2010}{2011}\)

\(\frac{1}{x+2}=\frac{1}{3}-\frac{2010}{2011}\)

\(\frac{1}{x+2}=\frac{1}{2011}\)

\(\Rightarrow x+2=2011\)

\(x=2009\)

6 tháng 4 2017

Đặt biểu thứ là A

2A=2/1.3+2/2.5+...+2/x.x+2

2A=1-1/3+1/3-1/5+.......+1/x-1/x+2

2A=1-1/x+2

5 tháng 4 2018

Ta có: \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2005.2006}\)

\(\Rightarrow N=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2005}-\frac{1}{2006}\)

          \(=1-\frac{1}{2006}=\frac{2005}{2006}\)

 \(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{2015.2017}\)

      \(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2015}-\frac{1}{2017}\)

        \(=1-\frac{1}{2017}=\frac{2016}{2017}\)

5 tháng 4 2018

N = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2005 - 1/2006

   = 1/1 - 1/2006

   = 2006/2006 - 1/2006

   =  2005/2006

24 tháng 2 2016

B=\(\frac{2}{1.3}+\frac{2}{3.5}+..........+\frac{2}{99.101}\)

B=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...........+\frac{1}{99}-\frac{1}{101}\)

B=\(1-\frac{1}{101}\)

B=\(\frac{100}{101}\)

28 tháng 4 2018

\(\dfrac{1}{1.3}\)+ \(\dfrac{1}{3.5}\)+ \(\dfrac{1}{5.7}\)+....+\(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{1005}{2011}\)

1- \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\)+ \(\dfrac{1}{5}\)- \(\dfrac{1}{7}\)+....+\(\dfrac{1}{x}\)- \(\dfrac{1}{x+1}\)= \(\dfrac{1005}{2011}\)

1- \(\dfrac{1}{x+1}\)= \(\dfrac{1005}{2011}\)

\(\dfrac{1}{x+1}\)= 1- \(\dfrac{1005}{2011}\)

\(\dfrac{1}{x+1}\)= \(\dfrac{1006}{2011}\)

=> x +1= 2011

=> x= 2011-1

=> x=2010

Bài này mk lm đại nha bn lolang! Cs j sai mong bn bỏ qua khocroi.

28 tháng 4 2018

ko biết

25 tháng 3 2018

Bài nhìn vô muốn xỉu rồi ='((

1. a) \(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{91.94}+\frac{2}{94.97}\)

\(=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{91.94}+\frac{3}{94.97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{97}\right)=\frac{2}{3}.\frac{96}{97}=\frac{64}{97}\)

b) Bạn tự làm, làm nữa chắc xỉu =((( Khi nào rảnh mình sẽ làm, nếu bạn cần

2 ) 

a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{1005}{2011}\)

\(\Leftrightarrow1-\frac{1}{x+2}=\frac{1005}{2011}:2=\frac{1005}{4022}\)

\(\Leftrightarrow\frac{1}{x+2}=1-\frac{1005}{4022}=\frac{3017}{4020+2}\)

\(\Rightarrow x=4020\)

24 tháng 3 2018

tu ma lam nguoi ta con gap hon min nhieu

10 tháng 7 2018

a, \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}=\frac{2017}{2018}\)

b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\cdot\left(1-\frac{1}{2005}\right)\)

\(=\frac{1}{2}\cdot\frac{2004}{2005}=\frac{1002}{2005}\)

10 tháng 7 2018

\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\) Từ đó áp dụng tính câu a

\(\frac{2}{1.3}=\frac{1}{1}-\frac{1}{3}\) Áp dụng tính câu b