
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{20}=\frac{y}{9}=\frac{z}{6}=\frac{x-2y+4z}{20-2\cdot9+4\cdot6}=\frac{13}{26}=\frac12\)
=>\(\begin{cases}x=20\cdot\frac12=10\\ y=9\cdot\frac12=\frac92\\ z=6\cdot\frac12=3\end{cases}\)
2: \(\frac{x}{3}=\frac{y}{4}\)
=>\(\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{7}\)
=>\(\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
mà 2x+3y-z=186
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{2\cdot15+3\cdot20-28}=\frac{186}{62}=3\)
=>\(\begin{cases}x=3\cdot15=45\\ y=3\cdot20=60\\ z=3\cdot28=84\end{cases}\)
3: \(\frac{x}{2}=\frac{2y}{5}=\frac{4z}{7}\)
=>\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}\)
mà 3x+5y+7z=123
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{2,5}=\frac{z}{1,75}=\frac{3x+5y+7z}{3\cdot2+5\cdot2,5+7\cdot1,75}=\frac{123}{30,75}=4\)
=>\(\begin{cases}x=4\cdot2=8\\ y=4\cdot2,5=10\\ z=4\cdot1,75=7\end{cases}\)
4: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)
=>\(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}\)
Đặt \(\frac{x}{2}=\frac{y}{\frac32}=\frac{z}{\frac43}=k\)
=>\(x=2k;y=\frac32k;z=\frac43k\)
xyz=-108
=>\(2k\cdot\frac32k\cdot\frac43k=-108\)
=>\(4k^3=-108\)
=>\(k^3=-27\)
=>k=-3
=>\(\begin{cases}x=2\cdot\left(-3\right)=-6\\ y=\frac32\cdot\left(-3\right)=-\frac92\\ z=\frac43\cdot\left(-3\right)=-4\end{cases}\)


\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=>\frac{x}{2}.\frac{2y}{3}.\frac{3z}{4}=\frac{x}{2}.\frac{x}{2}.\frac{x}{2}\)
=>\(\frac{x.2y.3z}{2.3.4}=\frac{x^3}{2.2.2}\)
=>\(\frac{xyz.6}{24}=\frac{x^3}{8}\)
=>\(\frac{x^3}{8}=\frac{108.6}{24}\)
=>\(\frac{x^3}{8}=27\)
=>\(x^3=27.8=>x^3=216=6^3=>x=6\)