\(\in\) N biết

x + y + z = xyz

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

x=y=z=0

1 tháng 4 2017

cách làm bài này thì mk k bt, nhưng đáp án là: x;y;z \(\in\) {1;2;3}

3 tháng 12 2017

Bài này lâu rùi sao ko mất đi thế ???

Bó tay "H24 HOC24"

26 tháng 12 2017

\(x\left(y+z\right)=32;y\left(x+z\right)=27;z\left(x+y\right)=35\\ \Rightarrow\left(xy+xz\right)+\left(xy+yz\right)+\left(xz+yz\right)=32+27+35\\ \Rightarrow2\left(xy+yz+zx\right)=94\\ \Rightarrow xy+yz+xz=47\\ \Rightarrow yz=15;xz=20;xy=12\\ \Rightarrow\left(x.y.z\right)^2=3600\)

Ta có : x;y;z khác 0 nên x.y.z khác 0

=> x.y.z=60

10 tháng 8 2019

Đat:\(6\left(x-\frac{1}{y}\right)=3\left(y-\frac{1}{z}\right)=2\left(z-\frac{1}{x}\right)=xyz-\frac{1}{xyz}=k\) 

\(\Rightarrow x-\frac{1}{y}=\frac{1}{6}k;y-\frac{1}{z}=\frac{1}{3}k;z-\frac{1}{x}=\frac{1}{2}k\) 

\(\Rightarrow\left(x-\frac{1}{y}\right)\left(y-\frac{1}{z}\right)\left(z-\frac{1}{x}\right)=\left(xyz-\frac{1}{xyz}\right)-\left(x-\frac{1}{y}\right)-\left(y-\frac{1}{z}\right)-\left(z-\frac{1}{x}\right)=0=\frac{k^3}{36}\)

 \(\Rightarrow k=0\Rightarrow xy=yz=zx=1\Rightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\left(giaipt\right)\)

27 tháng 9 2017

a) Từ \(9x=3y=2z\) ta chia các vế cho 18 (là BCNN của 9, 3 và 2) ta được:

  \(\frac{9x}{18}=\frac{3y}{18}=\frac{2z}{18}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{6}=\frac{z}{9}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{6}=\frac{z}{9}=\frac{x-y+z}{2-6+9}=\frac{50}{5}=10\)

=> \(\frac{x}{2}=10\Rightarrow x=10.2=20\)

    \(\frac{y}{6}=10\Rightarrow y=10.6=60\)

  \(\frac{z}{9}=10\Rightarrow z=10.9=90\)

b) Đặt \(k=\frac{x}{5}=\frac{y}{2}=\frac{z}{-3}\)

=> \(x=5k\) ; \(x=2k\) ; \(z=-3k\)    (*)

Biết xyz = 240 => \(5k.2k.\left(-3k\right)=240\)

\(\Rightarrow-30k^3=240\)

\(\Rightarrow k^3=-8\)

\(\Rightarrow k=-2\)

Thay vào (*) ta được

\(x=5k=5.\left(-2\right)=-10\)

\(y=2k=-4\)

\(z=-3k=6\)

4 tháng 8 2020

a)\(\hept{\begin{cases}9x=3y=2z\\x-y+z=50\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{9}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}\\x-y+z=50\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{9}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}=\frac{x-y+z}{\frac{1}{9}-\frac{1}{3}+\frac{1}{2}}=\frac{50}{\frac{5}{18}}=180\)

\(\Rightarrow\hept{\begin{cases}x=20\\y=60\\z=90\end{cases}}\)

b) Đặt \(\frac{x}{5}=\frac{y}{2}=\frac{z}{-3}=k\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=2k\\z=-3k\end{cases}}\)

xyz = 240 <=> 5k.2k.(-3)k = 240

                 <=> -30k3 = 240

                 <=> k3 = -8

                 <=> k3 = (-2)3

                 <=> k = -2

=> \(\hept{\begin{cases}x=-10\\y=-4\\z=6\end{cases}}\)