K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

khó hiểu làm sao ?

18 tháng 12 2016

Đề chỉ nhiêu đâu thôi hả

23 tháng 11 2016

Có: \(z^2\ge0\forall z\Rightarrow z^2+4\ge4\forall z\Rightarrow\sqrt{z^2+4}\ge\sqrt{4}=2\forall z\)

\(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=2\)

\(\Rightarrow\sqrt{z^2+4}=2\)\(\Rightarrow z^2+4=4\Rightarrow z^2=0\Rightarrow z=0\)

Lúc này ta có: x2016 + |y - 2015| = 0

\(x^{2016}\ge0;\left|y-2015\right|\ge0\forall x;y\)

nên \(\begin{cases}x^{2016}=0\\\left|y-2015\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y-2015=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y=2015\end{cases}\)

Vậy phương trình trên có nghiệm x = 0; y = 2015; z = 0

23 tháng 11 2016

Nghiệm nguyên nha

24 tháng 1 2017

f)

\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)

x-3={-4)=> x=-1

7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

23 tháng 11 2016

Ta thấy:\(\begin{cases}x^{2016}\ge0\\\left|y-2015\right|\ge0\\\sqrt{z^2+4}\end{cases}\)

\(\Rightarrow x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}\ge0\)

Để \(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=0\)

\(\Rightarrow\begin{cases}x^{2016}=0\\\left|y-2015\right|=0\\\sqrt{z^2+4}=0\end{cases}\).Vì \(\sqrt{z^2+4}=0\Leftrightarrow z^2+4=0\), có:

\(z^2+4\ge4>0\) (loại)

Suy ra không tồn tại x,y,z thỏa mãn

 

26 tháng 2 2017

Vì \(\sqrt{\left(x-\sqrt{2}\right)^2}=\left|x-\sqrt{2}\right|\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}=\left|y+\sqrt{2}\right|\ge0\);|x+y+z|\(\ge\)0

=>\(\left|x-\sqrt{2}\right|+\left|y+\sqrt{2}\right|+\left|x+y+z\right|\ge0\)

Dấu "=" xảy ra khi \(\left|x-\sqrt{2}\right|=\left|y+\sqrt{2}\right|=\left|x+y+z\right|=0\)

\(\left|x-\sqrt{2}\right|=0\Leftrightarrow x-\sqrt{2}=0\Leftrightarrow x=\sqrt{2}\)

\(\left|y+\sqrt{2}\right|=0\Leftrightarrow y+\sqrt{2}=0\Leftrightarrow y=-\sqrt{2}\)

\(\left|x+y+z\right|=0\Leftrightarrow x+y+z=0\Leftrightarrow\sqrt{2}+\left(-\sqrt{2}\right)+z=0\Leftrightarrow z=0\)

Vậy ............

18 tháng 12 2016

Mình làm lại bài bạn Đạt cho rõ và đễ hiểu hơn nha

Ta có

|x|\(\ge0\)(1)

x2016\(\ge0\)(2)

\(3\sqrt{x^2+4}\ge3\sqrt{4}=3.2=6\left(3\right)\)

Cộng (1),(2),(3) vế theo vế ta được

\(\left|x\right|+3\sqrt{x^2+4}+x^{2016}\ge6\)

Dấu = xảy ra khi x = 0

Vậy PT có nghiệm duy nhất là x = 0

18 tháng 12 2016

y, z chỗ nào vậy bạn