Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
\(\frac{x}{y}=\frac{5}{2}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{2}\)
áp dụng t\c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{15}{3}=5\)
\(\Rightarrow\hept{\begin{cases}x=5\cdot5=25\\y=5\cdot2=10\end{cases}}\)
Ta có: x/y=5/2 và x—y=15
==> x/5=y/2 và x—y=15
Áp Dụng tính chất dãy tỉ số bằng nhau, ta có
x/5=y/2= x—y/5–2=15/3=5
Ta được: x=5.5=25
y=5.2=10
b)Ta có:x/9=y/2 và x—3y=18
Áp Dụng tính chất dãy tỉ số bằng nhau, ta có:
x/9=y/2=x/9=3y/6=x—3y/9–6=18/3=6
Ta được: x= 9.6=54
y=2.6=12
c) Ta có: x/7=y/5=z/2 và x—y+z=—40
Áp Dụng dính chất dãy tỉ số bằng nhau, ta có:
x/7=y/5=z/2= x—y+z/7–5+2= —40/ 4=—10
Ta được: x= 7.(—10)=—70
y= 5.(—10)=—50
z= 2.(—10)=—20
Ta có :
\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)
\(=\)\(\frac{2\left(x+1\right)}{4}=\frac{3\left(y+3\right)}{12}=\frac{4\left(z+5\right)}{24}\)
Theo tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{2\left(x+1\right)}{4}=\frac{3\left(y+3\right)}{12}=\frac{4\left(z+5\right)}{24}\)\(=\frac{\left(2x+3y+4z\right)+\left(2+3+5\right)}{4+12+24}\)\(=\)\(\frac{9+10}{40}\)\(=\frac{19}{40}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{19}{40}\\y=\frac{19}{40}\\z=\frac{19}{40}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{19}{40}\cdot2\\y=\frac{19}{40}\cdot4\\z=\frac{19}{40}.6\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0,95\\y=1,9\\z=2,85\end{cases}}\)
Vậy ...
P/s : sai thì thôi =.=
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{y+z-2+z+x-3+x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2};y+z-2=2x;z+y-3=2y;x+y+5=2z\)
\(\Rightarrow\hept{\begin{cases}x+y+z-2=3x\\x+y+z-3=3y\\x+y+z+5=3z\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}-2=3x\\\frac{1}{2}-3=3y\\\frac{1}{2}+5=3z\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{-5}{6}\\z=\frac{11}{6}\end{cases}}}\)
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{x+z-3}=\frac{z}{y+x+5}\Rightarrow\frac{1}{x+y+z}=\frac{y+z-2}{x}=\frac{z+x-3}{y}=\frac{x+y+5}{z}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{1}{x+y+z}=\frac{y+z-2}{x}=\frac{z+x-3}{y}=\frac{x+y+5}{z}=\frac{y+z-2+z+x-3+x+y+5}{x+y+z}=2\left(vìx+y+z\ne0\right)\)
\(\Rightarrow\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\left(ĐK:x,y,z\ne0\right)\)
\(\frac{y+z-2}{x}=2\Leftrightarrow2x=y+z-2\Rightarrow3x=x+y+z-2\Rightarrow x=-\frac{1}{2}\)
\(\frac{z+x-3}{y}=2\Rightarrow2y=x+z-3\Rightarrow3y=x+y+z-3\Rightarrow y=-\frac{5}{6}\)
\(\frac{x+y+5}{z}=2\Rightarrow2z=x+y+5\Rightarrow3z=x+z+y+5\Rightarrow z=\frac{11}{6}\)
VẬY \(x=-\frac{1}{2},y=-\frac{5}{6},z=\frac{11}{6}\)
mink cũng chịu
câu này mình biết làm rồi