Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: |2x-1|=|x+1|
=>2x-1=x+1 hoặc 2x-1=-x-1
=>x=2 hoặc 3x=0
=>x=2 hoặc x=0
4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)
Ta thấy:
\(\left(2x+1\right)^2\ge0\Leftrightarrow\left(2x+1\right)^2+4\ge4\Leftrightarrow\sqrt{\left(2x+1\right)^2+4}\ge2.\)
\(3\left|4y^2-1\right|\ge0\)
\(\Rightarrow\sqrt{\left(2x+1\right)^2+4}+3\left|4y^2-1\right|\ge2+5\)\(\Leftrightarrow VT\ge VP\)
Dấu ''=" xảy ra khi x=-1/2 và y=1/2
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
Tính:
\(3.\left(x-2\right)-4.\left(2x+1\right)-5.\left(2x+3\right)=50\)
\(\Rightarrow3x-6-\left(8x+4\right)-\left(10x+15\right)=50\)
\(\Rightarrow3x-6-8x-4-10x-15=50\)
\(\Rightarrow-15x-25=50\)
\(\Rightarrow-15x=50+25\)
\(\Rightarrow-15x=75\)
\(\Rightarrow x=75:\left(-15\right)\)
\(\Rightarrow x=-5.\)
Vậy \(x=-5.\)
Chúc bạn học tốt!
\(3x^2-3xy-y-5x=-20\)
\(\Rightarrow\)\(3x\left(x-y\right)-y-5x=-20\)
\(\Rightarrow\)\(3x\left(x-y\right)+x-y-6x=-20\)
\(\Rightarrow\)\(3x\left(x-y\right)+\left(x-y\right)-6x=-20\)
\(\Rightarrow\)\(\left(x-y\right)\left(3x+1\right)-6x=-20\)
\(\Rightarrow\)\(\left(x-y\right)\left(3x+1\right)-6x-2=-22\)
\(\Rightarrow\)\(\left(x-y\right)\left(3x+1\right)-\left(6x+2\right)=-22\)
\(\Rightarrow\left(x-y\right)\left(3x+1\right)-2\left(3x+1\right)=-22\)
\(\Rightarrow\left(3x+1\right)\left(x-y-2\right)=-22\)
Ta có bảng sau:
\(3x+1\) | \(-1\) | \(1\) | \(-22\) | \(22\) |
\(x\) | \(x\notin Z\) | \(0\) | \(x\notin Z\) | \(7\) |
\(x-y-2\) | \(-22\) | \(-1\) | ||
\(y\) | \(-20\) | \(6\) |
Vậy ta có 2 bộ (x,y) là (0;-20) và (7;6)
Chúc bạn học tốt!
Ta có: \(\hept{\begin{cases}\sqrt{\left(2x+1\right)^2+4}\ge2\\3\left|4y^2-1\right|\ge0\end{cases}}\)
\(\Rightarrow VT\ge2+0+5=7=VP\)
Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(2x+1\right)^2=0\\4y^2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(2y-1\right)\left(2y+1\right)=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\\orbr{\begin{cases}y=\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\end{cases}}\)