Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x;y\in Z\)
2\(xy\) + y + 2\(x\) = 2
(2\(xy\) + y) + (2\(x\) + 1) = 2 + 1
y.(2\(x\) + 1) + (2\(x\) + 1) = 3
(2\(x\) + 1).(y + 1) = 3
Ư(3) = {-3; -1; 1; 3}
Lập bảng ta có:
2\(x+1\) | -3 | -1 | 1 | 3 |
\(x\) | -2 | -1 | 0 | 1 |
y + 1 | -1 | -3 | 3 | 1 |
y | -2 | -4 | 2 | 0 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\); y) = (-2; -2); (-1; -4); (0; 2); (1; 0)
Giải:
b) \(\left(2x+1\right).\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right)\) và \(\left(y-3\right)\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
Vì \(\left(2x+1\right)\) là số lẻ nên \(\left(2x+1\right)\in\left\{1;5\right\}\)
Ta có bảng giá trị:
2x+1 | 1 | 5 |
y-3 | 5 | 1 |
x | 1 | 2 |
y | 8 | 4 |
Vậy \(\left(x;y\right)=\left\{\left(1;8\right);\left(2;4\right)\right\}\)
c) \(2xy-x+2y=13\)
\(\Rightarrow x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right).\left(2y-1\right)=12\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-1\right)\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
Vì \(\left(2y-1\right)\) là số lẻ nên \(\left(2y-1\right)\in\left\{1;3\right\}\)
Ta có bảng giá trị:
x+1 | 12 | 4 |
2y-1 | 1 | 3 |
x | 11 | 3 |
y | 1 | 2 |
Vậy \(\left(x;y\right)=\left\{\left(11;1\right);\left(3;2\right)\right\}\)
Giải: (tiếp)
d) \(6xy-9x-4y+5=0\)
\(\Rightarrow3x.\left(2y-3\right)-4y=-5\)
\(\Rightarrow3x.\left(2y-3\right)-4y+6=1\)
\(\Rightarrow3x.\left(2y-3\right)-2.\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right).\left(2y-3\right)=1\)
\(\Rightarrow\left(3x-2\right)\) và \(\left(2y-3\right)\inƯ\left(1\right)=\left\{1\right\}\)
Ta có bảng giá trị:
3x-2 | 1 |
2y-3 | 1 |
x | 1 |
y | 2 |
Vậy \(\left(x;y\right)=\left\{\left(1;2\right)\right\}\)
e) \(2xy-6x+y=13\)
\(\Rightarrow2x.\left(y-3\right)+\left(y-3\right)=10\)
\(\Rightarrow\left(2x+1\right).\left(y-3\right)=10\)
Còn lại câu e nó giống hệt câu b nha nên câu lm giống nó là đc!
f) \(2xy-5x+2y=148\)
\(\Rightarrow2y.\left(x+1\right)-5x-5=143\)
\(\Rightarrow2y.\left(x+1\right)-5.\left(x+1\right)=143\)
\(\Rightarrow\left(x+1\right).\left(2y-5\right)=143\)
\(\Rightarrow\left(x+1\right)\) và \(\left(2y-5\right)\inƯ\left(143\right)=\left\{1;11;13;143\right\}\)
Ta có bảng giá trị:
x+1 | 1 | 11 | 13 | 143 |
2y-5 | 143 | 13 | 11 | 1 |
x | 0 | 10 | 12 | 142 |
y | 74 | 9 | 8 | 3 |
Vậy \(\left(x;y\right)=\left\{\left(0;74\right);\left(10;9\right);\left(12;8\right);\left(142;3\right)\right\}\)
Chúc bạn học tốt! (Trời mk mất gần 1 tiếng bài này! )
2xy + y + 2x = 1
=> (2x + 1).y + 2x = 1
=> (2x + 1).y + (2x + 1) = 2
=> (2x + 1)(y + 1) = 2 = 1. 2 = 2.1
Lập bảng:
2x + 1 | 1 | -1 | 2 | -2 |
y + 1 | 2 | -2 | 1 | -1 |
x | 0 | -1 | 1/2 | -3/2 |
y | 1 | -3 | 0 | -2 |
Vậy ...
2xy + y - 2x = 8
(2xy - 2x) + y = 8
2x . ( y-1) + y = 8
2x . ( y-1) + (y-1) = 8-1
(y-1) . ( 2x+1) = 7
Mà 7 có thể phân tích thành tích của 2 số tự nhiên là: 7 = 1.7
Ta có bảng sau:
y-1 2x+1 y x
1 7 2 3
7 1 8 0
Vậy cặp số x;y thỏa mãn là: 3;2 và 0;8
_HT_
a: =>x-xy+y=0
=>x(1-y)+1-y-1=0
=>(x+1)(1-y)=1
=>(x+1)(y-1)=-1
=>\(\left(x+1;y-1\right)\in\left\{\left(-1;1\right);\left(1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;2\right);\left(0;0\right)\right\}\)
b: 2x-xy-2y=3
=>x(2-y)-2y+4=7
=>x(2-y)+2(2-y)=7
=>(x+2)(y-2)=-7
=>\(\left(x+2;y-2\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(-1;-5\right);\left(-9;3\right);\left(-3;9\right);\left(5;1\right)\right\}\)
c: =>x(4-y)+5y-20=-3
=>x(4-y)-5(4-y)=-3
=>(4-y)(x-5)=-3
=>(x-5)(y-4)=3
=>\(\left(x-5;y-4\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(6;9\right);\left(8;5\right);\left(4;1\right);\left(2;3\right)\right\}\)
2xy - y + 2x = 11
2xy + 2x - y = 11
2x.(y + 1) - y = 11
2x.(y + 1) - y - 1 = 10
2x.(y + 1) - (y + 1) = 10
=> (y + 1).(2x - 1) = 10
=> (y + 1) và (2x - 1) thuộc Ư(10)
Từ đây xét các trường hợp của (y + 1) và (2x - 1) là ra
Ta có 2xy-2x=2x(y-1)
=>2xy-2x-y=2x(y-1)-y=4
Cộng 2 vế với 1 ta có
2x(y-1)-(y-1)=5
=>(2x-1)(y-1)=5=1.5=5.1
2x-1 | y-1 | x | y |
5 | 1 | 3 | 2 |
1 | 5 | 1 | 6 |
\(2xy-2x+y=41\)
\(\Leftrightarrow2xy-2x+y-1=40\)
\(\Leftrightarrow2x\left(y-1\right)+\left(y-1\right)=40\)
\(\Leftrightarrow\left(y-1\right)\left(2x+1\right)=40\)
\(\Rightarrow y-1\)và \(2x+1\)là ước của \(40\)
Vì \(2x\)luôn là số chẵn \(\Rightarrow2x+1\)luôn là số lẻ
\(\Rightarrow2x+1\)là ước lẻ của 40
Lập bảng giá trị ta có:
Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn là: \(\left(-3;-7\right)\), \(\left(-1;-39\right)\), \(\left(0;41\right)\), \(\left(2;9\right)\)