Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x + 2y = 2x+y
=> 2x+y - 2x - 2y = 0
=> 2x(2y - 1) - (2y - 1) = 1
=> (2x - 1)(2y - 1) = 1
=> \(\hept{\begin{cases}2^x-1=1\\2^y-1=1\end{cases}\Rightarrow\hept{\begin{cases}2^x=2\\2^y=2\end{cases}\Rightarrow}x=y=1}\)
b, 2x - 2y = 256
=> 2y(2x-y -1) = 28
Dễ thấy x khác y, ta xét 2 trường hợp:
+ Nếu x-y=1 => x=9,y=8
+ Nếu x - y lớn hoặc bằng 2 thì 2m-n - 1 là số lẻ lớn hơn 1, khi đó vế trái chứa thừa số nguyên tố khác 2, mà vế trái chỉ chứa thừa số nguyên tố 2 suy ra trường hợp này không xảy ra
Vậy x = 9, y = 8
Nếu x = y thì 2x-y = 1 => 2x-y - 1 = 0 => 2y.(2x-y - 1) = 0 < 256
=> x khác y => 2x-y - 1 là số lẻ
ta có: 2y.(2x-y - 1) = 256 = 28 = 28.1 => 2y = 28 và 2x-y - 1 = 1
=> y = 8 và 2x-y = 2 = 21 => x - y = 1 => x = y + 1 = 8 + 1 = 9
Vậy x = 9 ; y = 8
Cách này hơi lâu 1 chút nhưng vẫn ra nhé @@:
2x-2y=256 => 2y.(2x-y-1)=28
Vì x,y nguyên dương mà 2x-256=2y nên x>y suy ra x-y>0
Khi có 2x-y chẵn nên 2x-y-1 lẻ
Mà 2y.(2x-y-1)=28 nên 2x=28 và 2x-y-1 =1
( chố này có thể hiểu là vế phải bằng 2^8 nên khi phân tích vế trái ra thừa số nguyên tố chứa toàn lũy thừa của 2 nên không thể có thừa số lẻ nên suy ra 1 trong 2 thừa số bằng 1)
\(2^x-2^y=256\)
<=> \(2^y\left(2^{x-y}-1\right)=256\)
Em xem link: Câu hỏi của Trần Hoàng Sơn - Toán lớp 7 - Học toán với OnlineMath
Giair tiếp phần của cô Nguyễn Linh Chi -.- nhưng ko bt đúng ko :>> ( hoặc bn kham khảo cía link cô đưa cho cx đc ) :))
\(2^x-2^y=256\)
\(\Leftrightarrow2y\left(2^{x-y}-1\right)=256\)
\(\Leftrightarrow2^{x-y}-1=1\)
\(\Leftrightarrow2^{x-y}=2\)
\(\Leftrightarrow x-y=1\)
\(\Leftrightarrow2^y\left(2^1-1\right)=256\)
\(\Leftrightarrow2^y=2^8\)
Vì 2=2
\(\Leftrightarrow y=8\)
\(\Leftrightarrow x=9\)
2x-2y=256
=>2y(2x-y-1)=256
vì 2x-y-1 không chia hết cho 2 mà 256 chia hết cho 2x-y-1
=>2x-y-1=1
=>2x-y=2
=>x-y=1
=>2y(21-1)=256
=>2y=28
=>y=8
=>x=9
vậy (x;y)=(9;8)
\(2^x-2^y=256\)
=> \(2^x-2^y=2^8\)=> \(2^y.\left(2^{x-y}-1\right)=2^8\) (1)
dễ thấy x \(\ne\)y , ta xét 2 trường hợp:
a) Nếu x - y = 1 thì từ (1) ta có \(2^y.\left(2-1\right)=2^8\)Suy ra y = 8 ; x = 9
b) Nếu x - y \(\ge2\)thì \(2^{m-n}-1\)là một số lẻ lớn hơn 1 nên vế trái của (1) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố. Còn vế phải của (1) chỉ chứa thừa số nguyên tố 2. Mâu thuẫn.
Vậy y = 8 ; x = 9 là đáp án duy nhất.
\(2^x+2^y=2^{x+y}\)
\(\Leftrightarrow2^x.2^y-2^x-2^y=0\)
\(\Leftrightarrow2^x\left(2^y-1\right)-\left(2^y-1\right)=1\)
\(\Leftrightarrow\left(2^y-1\right)\left(2^x-1\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}2^x-1=1\\2^y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
để nghĩ tiếp
a)Tham khảo bài bạn Viet Bac nha: Câu hỏi của Nguyên Trân kHANH Chi ,mình khỏi làm lại,cùng ý tưởng mà=)