Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x/y = -6/9 và x-y= 30
đổi: x/y=-6/9
= x/9 =y/-6
áp dụng t/c của dãy tỉ số bằng nhau, ta có:
x/9=y/-6=x-y/9-(-6)=30/15=2
suy ra : x/9=2 => x=9.2=18
y/-6=2 => y=-6.2=12
vậy x=18: y = 12
tích cho mih nhé ^^
Ta có:
\(\frac{x}{2}=\frac{y}{3}\)=>\(\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\)=>\(\frac{y}{15}=\frac{z}{12}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-15+12}=\frac{-49}{7}=-7\)
=>\(\frac{x}{10}=7\)=>x=7.10=70
\(\frac{y}{15}=7\)=>y=7.15=105
\(\frac{z}{12}=7\)=>z=7.12=84
Vậy x=70 ;y=105 ;z=84
\(\frac{x}{2}=\frac{y}{3}\rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\rightarrow\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x-y+z}{10-5+12}=\frac{-49}{17}\)
\(\Rightarrow x=-\frac{490}{17};y=-\frac{735}{17};z=-\frac{588}{17}\)
Đặt \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=k\)
=>x=5k; y=7k; z=3k
\(x^2+y^2+z^2=585\)
\(\Leftrightarrow25k^2+49k^2+9k^2=585\)
\(\Leftrightarrow k^2=\dfrac{585}{83}\)
Trường hợp 1: \(k=\sqrt{\dfrac{585}{83}}\)
\(\Leftrightarrow x=5\sqrt{\dfrac{585}{83}};y=7\sqrt{\dfrac{585}{83}};z=3\sqrt{\dfrac{585}{83}}\)
Trường hợp 2: \(k=-\sqrt{\dfrac{585}{83}}\)
\(\Leftrightarrow x=-5\sqrt{\dfrac{585}{83}};y=-7\sqrt{\dfrac{585}{83}};z=-3\sqrt{\dfrac{585}{83}}\)
x/2=y/3 <=> x/8 = y/12 (nhân 2 vế với 1/4) (1)
y/4=z/5 <=> y/12 = z/15 (nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra:
x/8=y/12=z/15 = (x+y-z)/(8+12-15) = 10/5 =2
(vì x+y-z=10 và áp dụng tính chất của dãy tỷ số bằng nhau)
Vậy:
x = 2.8=16
y = 2.12 = 24
z = 2.15 = 30
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}\)
\(\frac{x}{8}=2\Leftrightarrow x=16\)
\(\frac{y}{12}=2\Leftrightarrow y=24\)
\(\frac{z}{15}=2\Leftrightarrow z=30\)
Vậy x = 16 , y=24 và z = 30
Áp dụng tính chất dãy tỉ số bàng nhau ta có:
\(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{4}\)=> \(\frac{x^2}{2^2}\)=\(\frac{y^2}{3^2}\)=\(\frac{z^2}{4^2}\)=\(\frac{x^2+y^2+z^2}{2^2+3^2+4^2}\)=\(\frac{110}{29}\)
=> x = 2 . \(\frac{110}{29}\)=\(\frac{220}{29}\)=\(7\frac{17}{29}\)
=> y = 3. \(\frac{110}{29}\)= \(\frac{330}{29}\)=\(11\frac{11}{29}\)
=> z = 4. \(\frac{110}{29}\)=\(\frac{440}{29}\)=\(15\frac{5}{29}\)
Vậy x, y, z lần lượt bằng: ......
\(\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{x+2+y-3-z}{7+5-3}=\frac{x+y-z-1}{9}=\frac{-17-1}{9}=\frac{-18}{9}=-2\)
\(\frac{x+2}{7}=-2\Rightarrow x=-16\)
\(\frac{y-3}{5}=-2\Rightarrow y=-12\)
\(\frac{z}{3}=-2\Rightarrow z=-6\)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{24}{12}=2\)
\(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)
\(\frac{y+2}{4}=2\Rightarrow y+2=8\Rightarrow y=6\)
\(\frac{z+3}{5}=2\Rightarrow z+3=10\Rightarrow z=7\)
Vậy x=5;y=6;z=7
x/2=y/3=z/5=(x+y+z)/10=11 ;
suy ra x=22;y=33;z=55