Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}.\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}.\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) và \(x+y+z=92.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2.\)
\(\left\{{}\begin{matrix}\frac{x}{10}=2\Rightarrow x=2.10=20\\\frac{y}{15}=2\Rightarrow y=2.15=30\\\frac{z}{21}=2\Rightarrow z=2.21=42\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(20;30;42\right).\)
c) Ta có: \(2x=3y=5z.\)
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\) và \(x+y-z=95.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{95}{6}.\)
\(\left\{{}\begin{matrix}\frac{x}{3}=\frac{95}{6}\Rightarrow x=\frac{95}{6}.3=\frac{95}{2}\\\frac{y}{5}=\frac{95}{6}\Rightarrow y=\frac{95}{6}.5=\frac{475}{6}\\\frac{z}{2}=\frac{95}{6}\Rightarrow z=\frac{95}{6}.2=\frac{95}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(\frac{95}{2};\frac{475}{6};\frac{95}{3}\right).\)
Chúc bạn học tốt!
a/ Ta có ;
\(x+y+z=92\)
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\)
\(\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{10}=2\Leftrightarrow x=20\\\dfrac{y}{15}=2\Leftrightarrow y=30\\\dfrac{z}{21}=2\Leftrightarrow z=42\end{matrix}\right.\)
Vậy .................
b/Ta có :
\(x+y-z=95\)
\(2x=3y=5z\)
\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)
\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{5}\)
Áp dụng t/x dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{5}=\dfrac{x+y-z}{15+10-5}=\dfrac{95}{19}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\Leftrightarrow x=75\\\dfrac{y}{10}=5\Leftrightarrow y=50\\\dfrac{z}{5}=5\Leftrightarrow z=25\end{matrix}\right.\)
Vậy ..
a, \(\dfrac{x}{2}=\dfrac{y}{3},\dfrac{y}{5}=\dfrac{z}{7},x+y+z=92\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\left(1\right)\)
\(\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21},x+y+z=92\)
AD t/c DTS = nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
+) \(\dfrac{x}{10}=2\Rightarrow x=20\)
+) \(\dfrac{y}{15}=2\Rightarrow y=30\)
+) \(\dfrac{z}{21}=2\Rightarrow z=42\)
b, \(2x=3y=5z,x+y-z=95\)
\(\Rightarrow\dfrac{30x}{15}=\dfrac{30y}{10}=\dfrac{30z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6},x+y-z=95\)
AD t/c DTS = nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
+) \(\dfrac{x}{15}=5\Rightarrow x=75\)
+) \(\dfrac{y}{10}=5\Rightarrow y=50\)
+) \(\dfrac{z}{6}=5\Rightarrow z=30\)
c, Bn xem lại đề bài nha!
1.
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)
=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
=> x=2x10=20
y=2x15=30
z=2x21=42
Tớ chỉ làm câu b thôi nhé
Nếu x/2=y/3,y/5=z/7 Suy ra y là 15 phần, x là 10 phần, z là 21 phần
92:(15+10+21)=2
x=2.10=20
y=2.15=30
z=2.21=42
a) \(\frac{x}{y}=\frac{3}{4}\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)(1)
\(\frac{y}{z}=\frac{5}{7}\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)(2)
Từ (1)(2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
đến đây tự làm tiếp đc rồi
b) \(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
rồi đến đây cx ez rồi
a) \(\frac{x}{2}=\frac{y}{3}\)và \(\frac{y}{5}=\frac{z}{7}\)và \(x+y+z=92\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số = nhau
ta có
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
Suy ra \(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
Vậy \(x=20;y=30;z=42\)
\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{7}\)và x+y+z=92
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x}{10}=\dfrac{y}{15}\)
\(\Leftrightarrow\dfrac{y}{5}=\dfrac{z}{7}\Leftrightarrow\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{y}{15}=\dfrac{z}{21}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x+y+z}{10+15+21}=\dfrac{92}{46}=2\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\Rightarrow\dfrac{x}{10}=2\Rightarrow x=20\)
\(\Rightarrow\dfrac{y}{15}=2\Rightarrow y=30\)
\(\Rightarrow\dfrac{z}{21}=2\Rightarrow z=42\)
Vậy x=20 ; y=30 và z=42
Vì bạn kia giải câu b rồi nên mình giải câu a và c nha!
a) \(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)và x - y = 15
Ta có: \(\dfrac{1}{2}x=\dfrac{2}{3}y=\dfrac{3}{4}z\)⇒\(\dfrac{6x}{12}=\dfrac{8y}{12}=\dfrac{9z}{12}\)
⇒\(\dfrac{x}{2}=\dfrac{y}{1,5}=\dfrac{z}{1,\left(3\right)}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{1,5}=\dfrac{z}{1,\left(3\right)}\)=\(\dfrac{x-y}{2-1,5}=\dfrac{15}{0.5}=30\)
\(\dfrac{x}{2}=30\Rightarrow x=30.2=60\)
\(\dfrac{y}{1,5}=30\Rightarrow y=30.1,5=45\)
\(\dfrac{z}{1,\left(3\right)}=30\Rightarrow z=30.1,\left(3\right)=40\)
Vậy \(x=60,y=45,z=40\)
a) \(\left(x-5\right)^2\cdot\left|y^2-81\right|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\y^2-81=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\y=+-9\end{cases}}}\)
b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
\(5y=2z\Leftrightarrow\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{3x+y-z}{9+2-5}=\frac{-360}{6}=-60\)
Tự tìm x,y,z nhé
c) \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{y}{15}=\frac{z}{12}\)
(làm tương tự câu b)
d) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Leftrightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\left(..........\right)\)
đến đây chắc dễ rồi
e) \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow x=\frac{5y}{4}\)
Thay \(x=\frac{5y}{4}\)vào biểu thức x^2 - y^2 =1
(tìm ra y sau đó thay y vào \(x=\frac{5y}{4}\)để tìm x)
f)