Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)
=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)
2. Ta có:
- \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
- \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{9}{7}\)⇒\(\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\)⇒\(\dfrac{y}{7}=\dfrac{z}{3}\)
⇒\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{15}{5}=3\)
⇒\(\left\{{}\begin{matrix}x=3.9=27\\y=3.7=21\\z=3.3=9\end{matrix}\right.\)
Ta có:\(\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\left(1\right)\)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{9}=-5\\\frac{y}{7}=-5\\\frac{z}{3}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-45\\y=-35\\z=-15\end{cases}}}\)
Ta có:
\(\frac{x}{y}=\frac{9}{7}\)=> \(\frac{x}{9}=\frac{y}{7}\)(1)
\(\frac{y}{z}=\frac{7}{3}\)=>\(\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) (2)
=>\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=-\frac{15}{5}=-3\)
=>\(\frac{x}{9}=-3\)=>x=-27
\(\frac{y}{7}=-3\)=>y=-21
\(\frac{z}{3}=-3\)=>z=-9
Vậy x=-27 ; y=-21 ; z=-9
Vì \(\frac{x}{y}=\frac{7}{9}\)\(\Rightarrow\frac{x}{7}=\frac{y}{9}\)(1)
\(\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\)(2)
Từ (1) và (2) suy ra \(\frac{x}{7}=\frac{y}{9}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{9}=\frac{z}{3}=\frac{x-y+z}{7-9+3}=-\frac{15}{1}=-15\)
\(\begin{cases}\frac{x}{7}=-15\\\frac{y}{9}=-15\\\frac{z}{3}=-15\end{cases}\Rightarrow\begin{cases}x=-105\\y=-135\\z=-45\end{cases}\)
Vậy x=-105
y=-135
z=-45
Ta có:\(\frac{x}{y}=\frac{7}{9};\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{x}{7}=\frac{y}{9};\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x}{49}=\frac{y}{63};\frac{y}{63}=\frac{z}{27}\)
\(\Rightarrow\frac{x}{49}=\frac{y}{63}=\frac{z}{27}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{49}=\frac{y}{63}=\frac{z}{27}=\frac{x-y+z}{49-63+27}=\frac{-15}{13}\)
Suy ra: \(\frac{x}{49}=\frac{-15}{13}\Rightarrow x=-\frac{735}{13};\frac{y}{63}=\frac{-15}{13}\Rightarrow y=-\frac{945}{13};\frac{z}{27}=\frac{-15}{13}\Rightarrow z=-\frac{405}{13}\)
y/2 = 7/2 chứ
7\3 nhé bạn