\(\dfrac{x}{y}=\dfrac{2017}{2}\\ \dfrac{y}{z}=\dfrac{2}{2017}\\ x-2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

\(\dfrac{x}{y}=\dfrac{2017}{2}\left(1\right)\\ \dfrac{y}{z}=\dfrac{2}{2017}\left(2\right)\\ x-2z=2017\left(3\right)\)

ĐK: \(y,z\ne0\)

Từ (1),(2) \(\Rightarrow\dfrac{x}{y}.\dfrac{y}{z}=\dfrac{2017}{2}.\dfrac{2}{2017}=1\Rightarrow\dfrac{x}{z}=1\Rightarrow x=z\)

Thay vào (3) \(\Rightarrow z-2z=2017\Rightarrow z=-2017\)

Từ (1) \(\Rightarrow y=-2\)

KL:
\(x=-2017\\ y=-2\\ z=-2017\)

7 tháng 9 2017

Ta có \(\dfrac{x}{y}=\dfrac{2017}{2};\dfrac{y}{z}=\dfrac{2}{2017}\)

=>2x=2017y;2z=2017y

=>2z=2x

=>x=z

=>x-2z=z-2z=-z

mà x-2z=2017

=>-z=2017

=>z=-2017

=>x=-2017

=>2017y=(-2017).2

=>y=-2.2017:2017

=>y=-2

29 tháng 5 2018

1.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}\)= \(\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\dfrac{1}{x+y+z}\) = 2

=> x+y+z = \(\dfrac{1}{2}\)

Ta có: \(\dfrac{y+z+1}{x}\) = 2

=> y+z+1 = 2x => x+y+z+1 = 3x <=> \(\dfrac{3}{2}=3x\)

<=> x = \(\dfrac{1}{2}\)

Tương tự thế vào \(\dfrac{x+z+2}{y}\) tính được y =\(\dfrac{5}{6}\)

=> z = -\(\dfrac{5}{6}\)

=> A = 2016.\(\dfrac{1}{2}\) = 1008

20 tháng 2 2020

Bạn ơi bạn giải dc chưa giúp mình với ạ

6 tháng 6 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(=\dfrac{1}{x+y+z}\)

\(\Rightarrow\dfrac{1}{x+y+z}=2\)\(x+y+z=\dfrac{1}{2}\)

+) \(\dfrac{y+z+1}{x}=2\)

\(\Rightarrow y+z+1=2x\)

\(\Rightarrow x+y+z+1=3x\)

\(\Rightarrow3x=1+\dfrac{1}{2}\)

\(\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)

Tương tự như trên, ta tìm được \(y=\dfrac{5}{6},z=\dfrac{-5}{6}\)

Thay giá trị của x, y, z vào A ta được:

\(A=2016.\dfrac{1}{2}+\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\)

\(=1008\)

Vậy A = 1008

6 tháng 8 2017

Áp dụng TCDTSBN ta có:

\(\dfrac{x+y+2017}{z}=\dfrac{y+z-2018}{x}=\dfrac{z+x+1}{y}=\dfrac{x+y+2017+y+z-2018+z+x+1}{z+x+y}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\dfrac{z+x+1}{y}=\dfrac{2}{x+y+z};\dfrac{z+x+1}{y}=2\\ \Rightarrow\dfrac{2}{x+y+z}=2\\ \Rightarrow x+y+z=1\)

\(\left\{{}\begin{matrix}\dfrac{x+y+2017}{z}=2\\\dfrac{y+z-2018}{x}=2\\\dfrac{z+x+1}{y}=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+2017=2z\\y+z-2018=2x\\z+x+1=2y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+z=3z-2017\\y+z+x=3x+2018\\z+x+y=3y-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z-2017=1\\3x+2018=1\\3y-1=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3z=2018\\3x=-2017\\3y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}z=\dfrac{2018}{3}\\x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{-2017}{3}\\y=\dfrac{2}{3}\\z=\dfrac{2018}{3}\end{matrix}\right.\)

6 tháng 8 2017

Hình như là sai đề bn ak!