Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(31\left(xyzt+xy+xt+zt+1\right)=40\left(yzt+y+t\right)\)
\(\Rightarrow\frac{xyzt+xy+xt+zt+1}{yzt+y+t}=\frac{40}{31}\)
\(\Rightarrow\frac{x\left(yzt+y+t\right)+zt+1}{yzt+y+t}=\frac{40}{31}\)
\(\Rightarrow x+\frac{zt+1}{yzt+y+t}=\frac{40}{31}\)
\(\Rightarrow x+\frac{1}{\left(\frac{yzt+y+t}{zt+1}\right)}=\frac{40}{31}\)
\(\Rightarrow x+\frac{1}{\left(y+\frac{t}{zt+1}\right)}=\frac{40}{31}\)
\(\Rightarrow x+\frac{1}{y+\frac{1}{\left(\frac{zt+1}{t}\right)}}=\frac{40}{31}\)
\(\Rightarrow x+\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{40}{31}\)
\(\frac{40}{31}< \frac{62}{31}=2\Rightarrow x< 2\)
Với x = 0; có :
\(\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{40}{31}\)
\(\Rightarrow y+\frac{1}{z+\frac{1}{t}}=\frac{31}{40}\)
Mà \(\frac{31}{40}< 1\Rightarrow y< 1\Rightarrow y=0\)
\(\Rightarrow\frac{1}{z+\frac{1}{t}}=\frac{31}{40}\)
\(\Rightarrow z+\frac{1}{t}=\frac{40}{31}\)
\(\cdot z=0\Rightarrow t=\frac{31}{40}\notin Z\)(Loại )
\(\cdot z=1\Rightarrow t=\frac{31}{9}\notin Z\)(Loại )
Với \(x=1;\)ta có :
\(\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{40}{31}-1\)
\(\Rightarrow\frac{1}{y+\frac{1}{z+\frac{1}{t}}}=\frac{9}{31}\)
\(\Rightarrow y+\frac{1}{z+\frac{1}{t}}=\frac{31}{9}\)
\(\frac{31}{9}< \frac{36}{9}=4\Rightarrow y< 4\)
\(\cdot y=0\Rightarrow z+\frac{1}{t}=\frac{9}{31}\Rightarrow z=0\Rightarrow t=\frac{31}{9}\notin Z\)(Loại)
\(\cdot y=1\Rightarrow z+\frac{1}{t}=\frac{9}{22}\Rightarrow z=0\Rightarrow t=\frac{22}{9}\notin Z\)(Loại)
\(\cdot y=2\Rightarrow z+\frac{1}{t}=\frac{9}{13}\Rightarrow z=0\Rightarrow t=\frac{13}{9}\notin Z\)(Loại )
\(\cdot y=3\Rightarrow z+\frac{1}{t}=\frac{9}{4}\)
\(\frac{9}{4}< 3\Rightarrow z< 3\)
- \(z=0\Rightarrow t=\frac{4}{9}\notin Z\)
- \(z=1\Rightarrow t=\frac{4}{5}\notin Z\)
- \(z=2\Rightarrow t=4\)( Thỏa mãn )
Vậy \(x=1;y=3;z=2;t=4.\)
\(P=\dfrac{1}{1+x+xy+xyz}+\dfrac{x}{x+xy+xyz+xyzt}+\)
\(\dfrac{xy}{xy+xyz+xyzt+xyzt\cdot x}+\dfrac{xyz}{xyz+xyzt+xyzt\cdot x+xyzt\cdot xy}\)
\(P=\dfrac{1}{1+x+xy+xyz}+\dfrac{x}{x+xy+xyz+1}+\)
\(\dfrac{xy}{xy+xyz+1+x}+\dfrac{xyz}{xyz+1+x+xy}\) ( do xyzt = 1 )
\(P=\dfrac{1+x+xy+xyz}{1+x+xy+xyz}=1\)
Answer:
\(P=\frac{1}{1+x+xy+xyz}+\frac{1}{1+y+yz+yzt}+\frac{1}{1+z+zt+ztx}+\frac{1}{1+t+tx+txy}\)
\(=\frac{1}{1+x+xy+xyz}+\frac{x}{x+xy+xyz+xyzt}+\frac{xy}{xy+xyz+xyzt+xyzt.x}+\frac{xyz}{xyz+xyzt+xyzt.x+xyzt.xy}\)
\(=\frac{1}{1+x+xy+xyz}+\frac{x}{x+xy+xyz+1}+\frac{xy}{xy+xyz+1+x}+\frac{xyz}{xyz+1+x+xy}\)
\(=\frac{1+x+xy+xyz}{1+x+xy+xyz}\)
\(=1\)
ai mà biết hả
Bạn vô duyên quá đấy!