\(x\div y\div z=3\div8\div5\)và \(3x+y-2z=1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2015

\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)

\(\frac{x}{3}=2\Rightarrow x=6\)

\(\frac{y}{8}=2\Rightarrow y=16\)

\(\frac{z}{5}=2\Rightarrow z=10\)

 

2 tháng 9 2015

bài này dễ mà, áp dụng  tính chất của dãy tỉ số bằng nhau!

12 tháng 10 2018

\(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\) va \(x+y-z=69\)

Ta co: \(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\) ; \(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)

\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)\(\dfrac{x+y-z}{20+24-21}\)

\(\dfrac{69}{23}=3\)\(x=20.3=60\)

\(y=24.3=72\)

\(z=21.3=63\)

\(Vay\) \(x=60;y=72;z=63\)

\(2a=3b;5b=7c\) va \(3a+5c-7c=30\)

Ta co: \(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\)

\(5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\)

\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)\(\dfrac{3a}{63}=\dfrac{5c}{50}=\dfrac{7b}{98}\)\(\dfrac{3a+5c-7b}{63+50-98}\)

\(\dfrac{30}{15}=2\)\(3a=63.2=126\)\(a=126:3=42\)

\(5c=50.2=100\) \(c=100:5=20\)

\(7b=98.2=196\) \(b=196:7=28\)

Vay \(a=42;c=20;b=28\)

\(x\div y\div z=3\div8\div5\) va \(3x+y-2z=14\)

Ta co: \(x\div y\div z=3\div8\div5\Rightarrow\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\)

\(\dfrac{3x}{9}=\dfrac{y}{8}=\dfrac{2z}{10}\)\(\dfrac{3x+y-2z}{9+8-10}\)

\(\dfrac{14}{7}=2\)\(3x=9.2=18\)\(x=18:3=6\)

\(y=8.2\) \(y=16\)

\(2z=10.2=20\) \(z=20:2=10\)

Vay \(x=6;y=16;z=10\)

Chuc ban hoc tot hihi

4 tháng 12 2018

Tìm x,y.z nha mấy bn

4 tháng 12 2018

Theo đề:

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\) và \(x+y-z=2,4\)

Theo tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}=\frac{x+y-z}{5+7-8}=\frac{2,4}{4}=\frac{3}{5}\)

=>x=3

    y=4,2

    z=4,8

28 tháng 12 2017

Theo bài ra: x/3=y/4=z/5

Đặt x/3=y/4=z/5=k

Suy ra: x=3k, y=4k, z=5k

Thay vào ra ta có:

2×(3k)^2+2×(4k)^2+3×(5k)^2=-100

.... tự làm tiếp nha bạn😀😀😀

28 tháng 12 2017

TA  CÓ  : 

7 tháng 8 2017

Ta có:

\(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(9+y\right)=3:1:2:5\)

\(\Rightarrow\dfrac{x+y}{3}=\dfrac{5-z}{1}=\dfrac{y+z}{2}=\dfrac{9+y}{5}\)

Đặt \(\dfrac{x+y}{3}=\dfrac{5-z}{1}=\dfrac{y+z}{2}=\dfrac{9+y}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=3k\\5-z=k\\y+z=2k\\9+y=5k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3k-y\left(1\right)\\z=5-k\left(2\right)\\z=2k-y\left(3\right)\\y=5k-9\left(4\right)\end{matrix}\right.\)

Từ (3) và (4)

\(\Rightarrow z=2k-\left(5k-9\right)\)

\(\Rightarrow z=2k-5k+9\left(5\right)\)

Từ (2) và (5)

\(\Rightarrow z=2k-5k+9=5-k\)

\(\Rightarrow2k-5k+9-5+k=0\)

\(\Rightarrow2k-5k+k+\left(9-5\right)=0\)

\(\Rightarrow\left(-2\right)k+4=0\)

\(\Rightarrow\left(-2\right)k=-4\)

\(\Rightarrow k=2\left(6\right)\)

Từ (2) và (6)

\(\Rightarrow z=5-2=3\)

Từ (4) và (6)

\(\Rightarrow y=5.2-9=1\)

Từ (1) và (6)

\(\Rightarrow x=3.2-1=5\)

Vậy \(x=5;y=1;z=3\)

Vì đây là lần đầu tiên mình làm bài này nên chỗ nào trình bày chưa được mong bạn sửa giúp ạ!

28 tháng 12 2017

Đề bài âubucqua

28 tháng 12 2017

đề bài mà??. Đấy là cách làm.. ha

21 tháng 8 2016

Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{y}{5}\)

Quy đòng : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

  \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)

\(\Leftrightarrow\begin{cases}\frac{x}{8}=1\Rightarrow x=1.8=8\\\frac{y}{12}=1\Rightarrow y=1.12=12\\\frac{z}{15}=1\Rightarrow z=1.15=15\end{cases}\)

Vậy x = 8 ; y = 12 ; z = 15

21 tháng 8 2016

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

x + y + z = 35 => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)

=> x = 1 . 8 = 8

y = 1 . 12 = 12

z = 1 . 15 = 15

=> tự KL 

16 tháng 8 2019

a) Ta có \(x:2=y:-5.\)

=> \(\frac{x}{2}=\frac{y}{-5}\)\(x-y=14.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{14}{7}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=2=>x=2.2=4\\\frac{y}{-5}=2=>y=2.\left(-5\right)=-10\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(4;-10\right).\)

k) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}.\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)\(2x+3y-z=186.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{15}=3=>x=3.15=45\\\frac{y}{20}=3=>y=3.20=60\\\frac{z}{28}=3=>z=3.28=84\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(45;60;84\right).\)

Mình chỉ làm 2 câu thôi nhé.

Chúc bạn học tốt!

17 tháng 8 2019

Bạn này riết quá, mình cũng đang bận nữa :(

b) \(21x=19y\Leftrightarrow\frac{x}{19}=\frac{y}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{14}{-2}=-7\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-38\\y=-42\end{matrix}\right.\)

Vậy...

c) Xem lại đề nhé.

d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{-12}{-12}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4\\y^2=9\\z^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm3\\z=\pm5\end{matrix}\right.\)

Vậy...

e) \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)(1)

\(3y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{3}\)(2)

Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-720}{10}=-72\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-144\\y=-360\\z=-216\end{matrix}\right.\)

Vậy...

f) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=12\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

g) Áp dụng TCDTSBN:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2\cdot2+3\cdot3-4}\)

\(=\frac{2x-2+3y-6-z+3}{9}=\frac{45}{9}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

Vậy...

h) \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y-z+1+x+z+2+x+y-3}{x+y+z}=\frac{2x+2y}{x+y+z}\)

Suy ra \(\frac{2x+2y}{x+y+z}=\frac{1}{x+y+z}\Leftrightarrow2x+2y=1\Leftrightarrow x+y=\frac{1}{2}\)

\(\Leftrightarrow\frac{\frac{1}{2}-3}{z}=\frac{1}{\frac{1}{2}+z}\Leftrightarrow z=\frac{5}{6}\)

Từ đó suy ra : \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=-3\)

Ta có hệ :

\(\left\{{}\begin{matrix}y-z+1=-3x\\x+z+2=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-\frac{5}{6}+1=-3x\\x+\frac{5}{6}+2=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+\frac{1}{6}=-3x\\x+\frac{17}{6}=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-3x-\frac{1}{6}\\x+\frac{17}{6}=-3\left(-3x-\frac{1}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{7}{24}\\y=\frac{-25}{24}\end{matrix}\right.\)

Vậy...